Skip to main content

Advertisement

Log in

Synthesis of TiO2 nanorice and their improved dye sensitized solar cells performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanostructures with different morphologies were successfully synthesized via a solvothermal reaction of titanium isopropoxide and acetic acid. The synthesized TiO2 nanostructures were characterizated in detail by powder X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman etc. technologies. The effect of growth time on the composition, morphology and crystal phase of synthesized TiO2 nanostructures were studied, and corresponding photovoltaic performance of dye-sensitized solar cell (DSSC) fabricated from TiO2 nanorice was also investigated. The DSSC based on the 24 h anatase TiO2 nanorice photoelectrode shows an overall light-to-electricity conversion efficiency of 7.45% accompanying a short-circuit current density of 18.83 mA cm−2, an open-circuit voltage of 788 mV and fill factor of 0.5, which is much higher than that of 12 h (5.25%), 16 h (5.73%) and 20 h (6.20%) samples. The significant enhancement of short-circuit current density and power conversion efficiency for the 24 h nanorice-based DSSC is mainly attributed to its larger dye loading amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Leem, D.H. Joo, J.S. Yu, Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011)

    Article  Google Scholar 

  2. A.L. Donne, M. Acciarri, D. Narducci, S. Marchionna, S. Binetti, Prog. Photovolt. Res. Appl. 17(8), 519–525 (2009)

    Article  Google Scholar 

  3. J. Burschka, N. Pellet, S.-J. Moon, M. Grätzel, Nature 499(7458), 316–319 (2013)

    Article  Google Scholar 

  4. H.-S. Kim, C.-R. Lee, J.-K. Im, K.-B. Lee, Sci. Rep. –UK 2(8), 1–7 (2012)

    Google Scholar 

  5. A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M.K. Nazeeruddin, M. Grätzel, ACS Nano 8(1), 362–373 (2014)

    Article  Google Scholar 

  6. M. Adachi, M. Sakamoto, J.T. Jiu, A.Y. Ogata, S. Isoda, J. Phys. Chem. B 110(28), 13872–13880 (2006)

    Article  Google Scholar 

  7. J. Bisquert, D. Cahen, G. Hodes, A. Zaban, Cheminform 108(24), 8106–8118 (2004)

    Google Scholar 

  8. Y.Z. Li, T. Pullerits, M.Y. Zhao, M.T. Sun, J. Phys. Chem. C 115(44), 21865–21873 (2011)

    Article  Google Scholar 

  9. P. Song, Y.Z. Li, F.C. Ma, M.T. Sun, J. Mater. Chem. C 3(18), 4810–4819 (2015)

    Article  Google Scholar 

  10. Y.Q. Li, Y.T. Feng, M.T. Sun, Sci. Rep. -UK 5, 1–11 (2015)

    Google Scholar 

  11. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  12. S. Ito, M.K. Nazeeruddin, P. Liska, P. Comte, M. Grätzel, Prog. Photovolt. Res. Appl. 14, 429–442 (2006)

    Article  Google Scholar 

  13. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242–247 (2014)

    Article  Google Scholar 

  14. V.-M. Guérin, J. Rathousky, T. Pauporté, Sol. Energy Mater. Sol. Cells. 102, 8–14 (2012)

    Article  Google Scholar 

  15. J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Energy Environ. Sci. 5, 5750–5757 (2012)

    Article  Google Scholar 

  16. L.Y. Lin, M.H. Yeh, C.P. Lee, C.Y. Chou, R. Vittal, K.C. Ho, Electrochim. Acta 62, 341–347 (2012)

    Article  Google Scholar 

  17. Y.L. Li, K.C. Yoo, D.K. Lee, Curr. Appl. Phys. 10, e171–e175 (2010)

    Article  Google Scholar 

  18. H.C. Weerasinghe, F.Z. Huang, Y.B. Cheng, Nano Energy 2, 174–189 (2013)

    Article  Google Scholar 

  19. K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Nano Lett. 7, 69–74 (2007)

    Article  Google Scholar 

  20. J.Y. Liao, H.P. Lin, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. 22, 1627–1633 (2012)

    Article  Google Scholar 

  21. D. Cahen, G. Hodes, M. Grätzel, J.F. Guillemoles, I. Riess, Phys. Chem. B 104, 2053–2059 (2000)

    Article  Google Scholar 

  22. M. Kaur, N.K. Verma, J. Mater. Sci. Mater. Electron. 24, 1121–1127 (2013)

    Article  Google Scholar 

  23. G.T. Yang, J. Zhang, P.Q. Wang, Q. Sun, J. Zheng, Y.J. Zhu, Curr. Appl. Phys. 11, 376–381 (2011)

    Article  Google Scholar 

  24. A.A. Umar, S. Nafisah, S.K.M. Saad, S.T. Tan, A. Balouch, M.M. Salleh, M. Oyama, Sol. Energy Mater. Sol. Cells. 122, 174–182 (2014)

    Article  Google Scholar 

  25. J.L. Song, H.B. Yang, X. Wang, S.Y. Khoo, C.C. Wong, X.W. Liu, C.M. Li, ACS Appl. Mater. Interface 4, 3712–3717 (2012)

    Article  Google Scholar 

  26. S.H. Lee, J. Kwon, D.Y. Kim, K. Song, S.H. Oh, J. Cho, E.F. Schubert, J.H. Park, J.K. Kim, Sol. Energy Mater. Sol. Cells. 132, 47–55 (2015)

    Article  Google Scholar 

  27. N. Huang, F.T. Chen, P.P. Sun, X.H. Sun, B. Sebo, X.Z. Zhao, Electrochim. Acta 143, 232–239 (2014)

    Article  Google Scholar 

  28. J.G. Chen, C.Y. Chen, C.G. Wu, C.Y. Lin, Y.H. Lai, C.C. Wang, H.W. Chen, R. Vittal, K.C. Ho, J. Mater. Chem. 20, 7201–7207 (2010)

    Article  Google Scholar 

  29. S.H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, Y.-E. Sung, Adv. Mater. 20(1), 54–58 (2007)

    Article  Google Scholar 

  30. Y.Y. Zhang, X.J. Li, M.Z. Feng, F.L. Zhou, J.Z. Chen, Surf. Coat. Technol. 205(7), 2572–2577 (2010)

    Article  Google Scholar 

  31. L.Z. Lv, Q.R. Chen, X.Y. Liu, J. Nanopart Res. 17(5), 1–10 (2015)

    Article  Google Scholar 

  32. F.F. Sun, W. Zhou, G.H. Tian, K. Pan, X.H. Miao, Y. Li, G.L. Zhang, T. Li, H.G. Fu, Chemcatchem 4(6), 844–850 (2012)

    Article  Google Scholar 

  33. W. Zhou, F.F. Sun, K. Pan, G.H. Tian, B.J. Jiang, Z.Y. Ren, C.G. Tian, H.G. Fu, Adv. Funct. Mater. 21, 1922–1930 (2011)

    Article  Google Scholar 

  34. Y.D. Yang, L.T. Qu, L.M. Dai, T.S. Kang, M. Durstock, Adv. Mater. 19, 1239–1243 (2007)

    Article  Google Scholar 

  35. E. Filippo, C. Carlucci, A.L. Capodilupo, P. Perulli, F. Conciauro, G.A. Corrente, G. Gigli, G. Ciccarella, Mater. Res. 18(3), 473–481 (2015)

    Article  Google Scholar 

  36. J.Y. Liao, J.W. He, H.Y. Xu, D.B. Kuang, C.Y. Su, J. Mater. Chem. 22(22), 7910–7918 (2012)

    Article  Google Scholar 

  37. J.Y. Liao, B.X. Lei, D.B. Kuang, C.Y. Su, Energy Environ. Sci. 4, 4079–4085 (2011)

    Article  Google Scholar 

  38. J.F. Ye, W. Liu, J.G. Cai, S. Chen, X.W. Zhao, H.H. Zhou, L.M. Qi, J. Am. Chem. Soc. 133, 933–940 (2011)

    Article  Google Scholar 

  39. R.H. Sui, V. Thangadurai, C.P. Berlinguette, Chem. Mater. 20, 7022–7030 (2008)

    Article  Google Scholar 

  40. H.-J. Kim, J.-D. Jeon, S.-Y. Kwak, Powder Technol. 243, 130–138 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50872084 and 51072124) and Program for New Century Excellent Talents in University (No. NCET100605). We wish to thank the Analytical and Testing Center of Sichuan University (SCU) for the assistance in sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, R., Xiao, J. & Wen, X. Synthesis of TiO2 nanorice and their improved dye sensitized solar cells performance. J Mater Sci: Mater Electron 28, 4107–4113 (2017). https://doi.org/10.1007/s10854-016-6030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6030-z

Keywords

Navigation