Skip to main content
Log in

Effect of magnetite bridged carbon nanotube/graphene networks on the properties of polyarylene ether nitrile

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the fabrication and properties of polyarylene ether nitrile (PEN) nanocomposite with 3D carbon nanotubes/graphene sheets network (Fe3O4-CNT/GS) bridged by magnetite. The Fe3O4-CNT/GS is firstly fabricated by one-step solvothermal method after the synthesis of phthalonitrile functionalized CNT (CNT-CN) and GO (GO-CNT). Fe3O4-CNT/GS is characterized by XPS and XRD, while the 3D frame of it is confirmed by SEM observation. Then, the obtained Fe3O4-CNT/GS is introduced into phthalonitrile end-capped polyarylene ether nitrile (PEN-Ph) to prepare the composites by solution-mixing assembly and solution casting method. Finally, the obtained PEN based nanocomposites are further treated at 320 °C to improve the properties of the composites. To study the effect of Fe3O4-CNT/GS on the PEN-Ph, the micro-morphologies, mechanical, thermal and dielectric properties of the obtained (Fe3O4-CNT/GS)/PEN nanocomposites films are investigated. Besides, the influence of the Fe3O4-CNT/GS content and the heat-treatment on the properties of the PEN composites are also investigated. The results show that Fe3O4-CNT/GS can improve the dielectric properties and maintain good mechanical properties of PEN composite simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Takahashi, H. Kato, S. Ma, T. Sasaki, K. Sakurai, Polymer 36, 3803 (1995)

    Article  Google Scholar 

  2. Y. Gao, G. Robertson, M. Guiver, S. Mikhailenko, X. Li, S. Kaliaguine, Macromolecules 40, 1512 (2007)

    Article  Google Scholar 

  3. Y. Zhan, X. Yang, H. Guo, J. Yang, F. Meng, X. Liu, J. Mater. Chem. 22, 5602 (2012)

    Article  Google Scholar 

  4. X. Yang, Y. Zhan, J. Yang, J. Zhong, R. Zhao, X. Liu, J. Polym. Res. 19, 9806 (2012)

    Article  Google Scholar 

  5. H. Zhang, J. Pang, D. Wang, A. Li, X. Li, Z. Jiang, J. Membr. Sci. 264, 56 (2005)

    Article  Google Scholar 

  6. X. Yang, M. Xu, X. Zou, X. Liu, Polym. Compos. 35, 404 (2014)

    Article  Google Scholar 

  7. L. Tong, M. Liu, Y. Long, X. Liu, J. Appl. Polym. Sci. 131, 40418 (2014)

    Article  Google Scholar 

  8. X. Huang, M. Feng, X. Liu, J. Mater. Sci.: Mater. Electron. 25, 97 (2014)

    Google Scholar 

  9. P. Zheng, Z. Pu, W. Yang, S. Shen, K. Jia, X. Liu, J. Mater. Sci.: Mater. Electron. 25, 3833 (2014)

    Google Scholar 

  10. Z. Pu, X. Huang, L. Chen, J. Yang, H. Tang, X. Liu, J. Mater. Sci. Mater. Electron. 24, 2913 (2013)

    Article  Google Scholar 

  11. Y. Abdi, J. Koohsorkhi, J. Derakhshandeh, Mater. Sci. Eng. C 26, 1219 (2006)

    Article  Google Scholar 

  12. Z. Kolahdouz, M. Kolahdouz, H. Ghanbari, Mater. Sci. Eng. B 177, 1542 (2012)

    Article  Google Scholar 

  13. C. Oueiny, S. Berlioz, X. Perrin, Prog. Polym. Sci. 39, 707 (2014)

    Article  Google Scholar 

  14. S. Hong, D. Kim, S. Lee, Compos. Part A Appl. Sci. 77, 142 (2015)

    Article  Google Scholar 

  15. F. Akbar, M. Kolahdouz, S. Larimian, J. Mater. Sci. Mater. Electron. 26, 4347 (2015)

    Article  Google Scholar 

  16. X. Wang, H. Yang, L. Song, Compos. Sci. Technol. 72, 1 (2011)

    Article  Google Scholar 

  17. S. Stankovich, A. Dikin, B. Dommett, Nature 442, 282 (2011)

    Article  Google Scholar 

  18. L. Tong, R. Wei, J. Wang, Mater. Lett. 178, 312 (2016)

    Article  Google Scholar 

  19. H. Guo, Z. Chen, J. Zhang, J. Polym. Res. 19, 573 (2012)

    Google Scholar 

  20. Z. Pu, L. Tong, M. Feng, RSC Adv. 5, 72028 (2015)

    Article  Google Scholar 

  21. Y. Zhan, R. Zhao, M. Feng, Mater. Sci. Eng. B 176, 779 (2011)

    Article  Google Scholar 

  22. V. Datsyuk, M. Kalyva, K. Papagelis, Carbon 46, 833 (2008)

    Article  Google Scholar 

  23. F. Meng, X. Liu, RSC Adv. 5, 7018 (2015)

    Article  Google Scholar 

  24. H. Tang, J. Yang, J. Zhong, Mater. Lett. 75, 2758 (2011)

    Article  Google Scholar 

  25. H. Tang, Z. Pu, X. Huang, J. Appl. Polym. Sci. 130, 1363 (2013)

    Article  Google Scholar 

  26. H. Deligöz, S. Özgümüş, T. Yalçınyuva, S. Yıldırım, D. Deger, Polymer 46, 3720 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from NSFC (51373028, 51403029 and 51603029), UESTC (A03013023601012), South Wisdom Valley Innovative Research Team Program and Ningbo Major (key) Science and Technology Research Plan (2013B06011) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renbo Wei or Xiaobo Liu.

Additional information

Jialing Wang and Renbo Wei have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wei, R., Tong, L. et al. Effect of magnetite bridged carbon nanotube/graphene networks on the properties of polyarylene ether nitrile. J Mater Sci: Mater Electron 28, 3978–3986 (2017). https://doi.org/10.1007/s10854-016-6010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6010-3

Keywords

Navigation