Skip to main content
Log in

Improved short-circuit current density of a-Si:H thin film solar cells with n-type silicon carbide layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the performance of p–i–n hydrogenated amorphous silicon thin film solar cells by adopting n-type silicon carbide (n-SiCx:H) layer was investigated. By varying CH4/SiH4 gas flow ratio, refractive index and electrical conductivity of n-SiCx:H thin films were changed in the range of 3.4 to 3.8 and 1.48E−5 to 1.24 S/cm, respectively. Compared with solar cells with n-Si:H/Ag configuration, short-circuit current density (J sc ) of solar cells with n-SiCx:H/Ag configuration was improved up to 8.4%, which was comparable with that of solar cells with n-Si:H/ZnO/Ag configuration. Improved J sc was related with enhanced spectral response at long wavelength of 500–800 nm. It was supposed that the decreased refractive index of n-SiCx:H layer resulted in the increased back reflectance, which contributed to the improved J sc. Our experiments demonstrated that n-SiCx:H thin films were attractive choice because they functioned both as n-layer and interlayer in back reflector, and their deposition method was compatible with preparation process of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Yablonovitch, G.D. Cody, IEEE Trans. Electron Devices 29, 300–305 (1982)

    Article  Google Scholar 

  2. T. Tiedje, E. Yablonovitch, G.D. Cody et al., IEEE Trans. Electron Devices 31, 711–716 (1984)

    Article  Google Scholar 

  3. J. Müller, B. Rech, J. Springer et al., Sol. Energy 77, 917–930 (2004)

    Article  Google Scholar 

  4. X. Yan, W. Li, A.G. Aberle et al., J. Mater. Sci. Mater. Electron. 26, 7049–7058 (2015)

    Article  Google Scholar 

  5. A. Hongsingthong, T. Krajangsang, I.A. Yunaz et al., Appl. Phys. express 3, 4161–4175 (2010)

    Article  Google Scholar 

  6. H. Sai, H. Jia, M. Kondo, J. Appl. Phys. 108, 044505 (2010)

    Article  Google Scholar 

  7. J. Springer, A. Poruba, L. Müllerova et al., J. Appl. Phys. 95, 1427–1429 (2004)

    Article  Google Scholar 

  8. J.B. Orhan, E. Vallat-Sauvain, M. Marmello et al., in MRS Spring Meeting and Exhibit (San Francisco, American, 2013), pp. 51–56

  9. S.J. Jung, B.J. Kim, M. Shin, Sol. Energy Mater. Sol. Cells 121, 1–7 (2014)

    Article  Google Scholar 

  10. H. Zhu, Y. Huang, Y. Mai et al., Phys. Status Solidi A 210, 1143–1148 (2013)

    Article  Google Scholar 

  11. H. Scherg-Kurmes, S. Ring, S. Calnan, B. Stannowski, B. Szyszka, R. Schlatmann, B. Rech, Phys. Status Solidi A 211, 2078–2081 (2014)

    Article  Google Scholar 

  12. A.M.K. Dagamseh, B. Vet, F.D. Tichelaar et al., Thin Solid Films 516, 7844–7850 (2008)

    Article  Google Scholar 

  13. C. Banerjee, T. Srikanth, U. Basavaraju et al., Sol. Energy 97, 591–595 (2013)

    Article  Google Scholar 

  14. S. Kim, H. Lee, J.W. Chung et al., Curr. Appl. Phys. 13, 743–747 (2013)

    Article  Google Scholar 

  15. P.D. Veneri, L.V. Mercaldo, I. Usatii, Appl. Phys. Lett. 97, 023512 (2010)

    Article  Google Scholar 

  16. A. Lambertz, V. Smirnov, T. Merdzhanova et al., Sol. Energy Mater. Sol. Cells 119, 134–143 (2013)

    Article  Google Scholar 

  17. G. Yue, L. Sivec, J.M. Owens et al., Appl. Phys. Lett. 95, 263501 (2009)

    Article  Google Scholar 

  18. J. Springer, B. Rech, W. Reetz et al., Sol. Energy Mater. Sol. Cells 85, 1–11 (2005)

    Google Scholar 

  19. V. Demontis, C. Sanna, J. Melskens et al., J. Appl. Phys. 113, 064508 (2013)

    Article  Google Scholar 

  20. S.H. Kim, D.J. You, S.T. Hwang et al., Sol. Energy Mater. Sol. Cells 127, 98–103 (2014)

    Article  Google Scholar 

  21. F. Demichelis, C.F. Pirri, E. Tresso, J. Appl. Phys. 72, 1327–1333 (1992)

    Article  Google Scholar 

  22. G. Ambrosone, U. Coscia, S. Lettieri et al., Thin Solid Films 403, 349–353 (2002)

    Article  Google Scholar 

  23. C. Droz, E. Vallat-Sauvain, J. Bailat et al., Sol. Energy Mater. Sol. Cells 81, 61–71 (2004)

    Article  Google Scholar 

  24. J. Ma, J. Ni, J. Zhang et al., Sol. Energy Mater. Sol. Cells 114, 9–14 (2013)

    Article  Google Scholar 

  25. X. Liu, Z. Zhang, Y. Wu, Compos. B Eng. 42, 326–329 (2011)

    Article  Google Scholar 

  26. H.R. Philipp, E.A. Taft, Phys. Rev. 120, 37 (1960)

    Article  Google Scholar 

  27. G. Pensl, W.J. Choyke, Phys. B 185, 264–283 (1993)

    Article  Google Scholar 

  28. I.A. Yunaz, H. Nagashima, D. Hamashita et al., Sol. Energy Mater. Sol. Cells 95, 107–110 (2011)

    Article  Google Scholar 

  29. I. Abdulhalim, J. Opt. Pure Appl. Opt. 1, 646–653 (1999)

    Article  Google Scholar 

  30. P. Prabhathan, V.M. Murukeshan, Plasmonics 11, 253–260 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (No. 61404143), Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, and Ningbo Key Laboratory of Silicon and Organic Thin Film Optoelectronic Technologies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyan Wang or Weijie Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Wang, W., Li, H. et al. Improved short-circuit current density of a-Si:H thin film solar cells with n-type silicon carbide layer. J Mater Sci: Mater Electron 28, 3955–3961 (2017). https://doi.org/10.1007/s10854-016-6007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6007-y

Keywords

Navigation