Skip to main content

Microstructure formation in chalcogenide thin films assisted by thermal dewetting

Abstract

The spontaneous formation of self-assembled and/or self-organized patterns is a fundamental and technologically significant topic. This process is achieved via a phenomenon called dewetting, should it be thermally induced, or caused by laser exposure. Although dewetting seems to be a well-known phenomenon for metallic and polymeric thin films, no proper investigation regarding glassy thin films seems to have been done. Thus, in the present study we try to elaborate on the process of thermal dewetting applied to glassy thin films of the system Agx(As20S80)100−x.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. F. Leroy, L. Borowik, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann, J.C. Barbé, P. Müller, How to control solid state dewetting: a short review. Surf. Sci. Rep. 71, 391–409 (2016)

    Article  Google Scholar 

  2. J.-M. Lee, B.-I. Kim, Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures. Mater. Sci. Eng. A 449–451, 769–773 (2007)

    Article  Google Scholar 

  3. Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, J. Kim, Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 4(4), 364–370 (2009)

    Article  Google Scholar 

  4. P.F. Neretina, A. Sundar, K.D. Gilroy, Z.E. Eskin, R.A. Hughes, S. Neretina, Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer. Nanotechnology 23(49), 495604 (2012)

    Article  Google Scholar 

  5. A. Breitling, D. Goll, Hard magnetic FePt thin films and nanopatterns. J. Magn. Magn. Mater. 320(8), 1449–1456 (2008)

    Article  Google Scholar 

  6. D. Gentili, G. Foschi, F. Valle, M. Cavallini, F. Biscarini, Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 41(12), 4430 (2012)

    Article  Google Scholar 

  7. S.J. Randolph, J.D. Fowlkes, A.V. Melechko, K.L. Klein, H.M. Meyer, M.L. Simpson, P.D. Rack, Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth. Nanotechnology 18, 0–7 (2007)

    Article  Google Scholar 

  8. G. Reiter, Dewetting of thin polymer films. Phys. Rev. Lett. 68(1), 75–78 (1992)

    Article  Google Scholar 

  9. L. Xue, Y. Han, Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 36(2), 269–293 (2011)

    Article  Google Scholar 

  10. P. Yoo, K. Suh, Y. Kim, D.-Y. Khang, H. Lee, Nanolithography and Patterning Techniques in Microelectronics (Elsevier, Amsterdam, 2005)

    Google Scholar 

  11. M. Krbal, T. Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S. Kasap, M. Frumar, Properties and structure of Agx(As0.33S0.67)100−x bulk glasses. J. Non-Cryst. Solids 353(13–15), 1232–1237 (2007)

    Article  Google Scholar 

  12. P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, K.A. Jackson, M. Micoulaut, Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1−x system. Phys. Rev. B 78(22), 224208 (2008)

    Article  Google Scholar 

  13. T. Wagner, S.O. Kasap, Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses. J. Mater. Sci. 33(23), 5581–5588 (1998)

    Article  Google Scholar 

  14. R. Frerichs, New optical glasses with good transparency in the infrared. J. Opt. Soc. Am. 43(12), 1153–1157 (1953)

    Article  Google Scholar 

  15. Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, K. Holbert, Total-ionizing-dose effects on the resistance switching characteristics of chalcogenide programmable metallization cells. IEEE T. Nucl. Sci. 60(6), 4563–4569 (2013)

    Article  Google Scholar 

  16. M. Saremi, A physical-based simulation for the dynamic behavior of photodoping mechanism in chalcogenide materials used in the lateral programmable metallization cells. Solid State Ion. 290, 1–5 (2016)

    Article  Google Scholar 

  17. Z.U. Borisova, Glassy Semiconductors (Springer, New York, 1981)

    Book  Google Scholar 

  18. S. Maruno, M. Noda, T. Yamada, Glass Formation and Thermal Analysis in the System As–S–Ag. J. Ceram. Assoc. Jpn. 81(938), 445–447 (1973)

    Article  Google Scholar 

  19. D.E. Laughlin, W. Soffa, Spinodal structures, in Metals Handbook, 9th edn, vol. 9: Metallography and Microstructures (American Society for Metals, 1985), pp. 652–654

  20. I. Kaban, P. Jóvári, T. Wágner, M. Bartoš, M. Frumar, B. Beuneu, W. Hoyer, N. Mattern, J. Eckert, Structural study of AsS2–Ag glasses over a wide concentration range. J. Non-Cryst. Solids 357(19–20), 3430–3434 (2011)

    Article  Google Scholar 

  21. T.D. Mel’nichenko, V.I. Fedelesh, T.N. Mel’nichenko, D.S. Sanditov, S.S. Badmaev, D.G. Damdinov, On the approximate estimation of the surface tension of chalcogenide glass melts. Glass. Phys. Chem. 35(1), 32–42 (2009)

    Article  Google Scholar 

  22. A.J. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman & Hall, New York, 1987)

    Book  Google Scholar 

  23. R. Golovchak, O. Shpotyuk, J. Mccloy, B. Riley, C. Windisch, S. Sundaram, A. Kovalskiy, H. Jain, Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS. Philos. Mag. 90(34), 4489–4501 (2010)

    Article  Google Scholar 

  24. V. Mastelaro, S. Bénazeth, H. Dexpert, EXAFS Study of Ag–As–Se and Ag–As–S ionic conductor glasses. J. Phys. IV 2(C2), C2-195–C2-200 (1992)

    Google Scholar 

  25. V. Mastelaro, S. Bénazeth, H. Dexpert, Comparative EXAFS study of (Ag2X)y(As2X3)1−y glasses (X = Se or S). J. Non-Cryst. Solids 185(3), 274–282 (1995)

    Article  Google Scholar 

  26. D.W. Scott, M.Z. El-Sabban, A valence force field for aliphatic sulfur compounds: dithiaalkanes. J. Mol. Spectrosc. 31(1), 362–367 (1969)

    Article  Google Scholar 

  27. F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As–S glasses: Raman and SEM studies. J. Non-Cryst. Solids 355(37–42), 2010–2014 (2009)

    Article  Google Scholar 

  28. A. Steel, G. Greaves, A. Firth, A. Owen, Photodissolution of silver in arsenic sulphide films—an exafs study. J. Non-Cryst. Solids 107, 155–162 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Canada Excellence Research Chair program (CERC: CG 096487) in Enabling Photonic Innovations for Information and Communication for their financial support. The supports of Natural Sciences and Engineering Research Council of Canada (NSERC: CG 102867) and of the Canada Foundation for Innovation (CFI: GF 105079) agencies are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Douaud.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Douaud, A., Messaddeq, S.H. & Messaddeq, Y. Microstructure formation in chalcogenide thin films assisted by thermal dewetting. J Mater Sci: Mater Electron 28, 6989–6999 (2017). https://doi.org/10.1007/s10854-016-5937-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5937-8

Keywords

  • Ag2S
  • Spinodal Decomposition
  • Arsenic Sulfide
  • Dewetting Process
  • Proustite