F. Leroy, L. Borowik, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann, J.C. Barbé, P. Müller, How to control solid state dewetting: a short review. Surf. Sci. Rep. 71, 391–409 (2016)
Article
Google Scholar
J.-M. Lee, B.-I. Kim, Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures. Mater. Sci. Eng. A 449–451, 769–773 (2007)
Article
Google Scholar
Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, J. Kim, Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 4(4), 364–370 (2009)
Article
Google Scholar
P.F. Neretina, A. Sundar, K.D. Gilroy, Z.E. Eskin, R.A. Hughes, S. Neretina, Altering the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer. Nanotechnology 23(49), 495604 (2012)
Article
Google Scholar
A. Breitling, D. Goll, Hard magnetic FePt thin films and nanopatterns. J. Magn. Magn. Mater. 320(8), 1449–1456 (2008)
Article
Google Scholar
D. Gentili, G. Foschi, F. Valle, M. Cavallini, F. Biscarini, Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 41(12), 4430 (2012)
Article
Google Scholar
S.J. Randolph, J.D. Fowlkes, A.V. Melechko, K.L. Klein, H.M. Meyer, M.L. Simpson, P.D. Rack, Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth. Nanotechnology 18, 0–7 (2007)
Article
Google Scholar
G. Reiter, Dewetting of thin polymer films. Phys. Rev. Lett. 68(1), 75–78 (1992)
Article
Google Scholar
L. Xue, Y. Han, Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 36(2), 269–293 (2011)
Article
Google Scholar
P. Yoo, K. Suh, Y. Kim, D.-Y. Khang, H. Lee, Nanolithography and Patterning Techniques in Microelectronics (Elsevier, Amsterdam, 2005)
Google Scholar
M. Krbal, T. Wagner, T. Srba, J. Schwarz, J. Orava, T. Kohoutek, V. Zima, L. Benes, S. Kasap, M. Frumar, Properties and structure of Agx(As0.33S0.67)100−x bulk glasses. J. Non-Cryst. Solids 353(13–15), 1232–1237 (2007)
Article
Google Scholar
P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, K.A. Jackson, M. Micoulaut, Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1−x system. Phys. Rev. B 78(22), 224208 (2008)
Article
Google Scholar
T. Wagner, S.O. Kasap, Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses. J. Mater. Sci. 33(23), 5581–5588 (1998)
Article
Google Scholar
R. Frerichs, New optical glasses with good transparency in the infrared. J. Opt. Soc. Am. 43(12), 1153–1157 (1953)
Article
Google Scholar
Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, K. Holbert, Total-ionizing-dose effects on the resistance switching characteristics of chalcogenide programmable metallization cells. IEEE T. Nucl. Sci. 60(6), 4563–4569 (2013)
Article
Google Scholar
M. Saremi, A physical-based simulation for the dynamic behavior of photodoping mechanism in chalcogenide materials used in the lateral programmable metallization cells. Solid State Ion. 290, 1–5 (2016)
Article
Google Scholar
Z.U. Borisova, Glassy Semiconductors (Springer, New York, 1981)
Book
Google Scholar
S. Maruno, M. Noda, T. Yamada, Glass Formation and Thermal Analysis in the System As–S–Ag. J. Ceram. Assoc. Jpn. 81(938), 445–447 (1973)
Article
Google Scholar
D.E. Laughlin, W. Soffa, Spinodal structures, in Metals Handbook, 9th edn, vol. 9: Metallography and Microstructures (American Society for Metals, 1985), pp. 652–654
I. Kaban, P. Jóvári, T. Wágner, M. Bartoš, M. Frumar, B. Beuneu, W. Hoyer, N. Mattern, J. Eckert, Structural study of AsS2–Ag glasses over a wide concentration range. J. Non-Cryst. Solids 357(19–20), 3430–3434 (2011)
Article
Google Scholar
T.D. Mel’nichenko, V.I. Fedelesh, T.N. Mel’nichenko, D.S. Sanditov, S.S. Badmaev, D.G. Damdinov, On the approximate estimation of the surface tension of chalcogenide glass melts. Glass. Phys. Chem. 35(1), 32–42 (2009)
Article
Google Scholar
A.J. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman & Hall, New York, 1987)
Book
Google Scholar
R. Golovchak, O. Shpotyuk, J. Mccloy, B. Riley, C. Windisch, S. Sundaram, A. Kovalskiy, H. Jain, Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS. Philos. Mag. 90(34), 4489–4501 (2010)
Article
Google Scholar
V. Mastelaro, S. Bénazeth, H. Dexpert, EXAFS Study of Ag–As–Se and Ag–As–S ionic conductor glasses. J. Phys. IV 2(C2), C2-195–C2-200 (1992)
Google Scholar
V. Mastelaro, S. Bénazeth, H. Dexpert, Comparative EXAFS study of (Ag2X)y(As2X3)1−y glasses (X = Se or S). J. Non-Cryst. Solids 185(3), 274–282 (1995)
Article
Google Scholar
D.W. Scott, M.Z. El-Sabban, A valence force field for aliphatic sulfur compounds: dithiaalkanes. J. Mol. Spectrosc. 31(1), 362–367 (1969)
Article
Google Scholar
F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As–S glasses: Raman and SEM studies. J. Non-Cryst. Solids 355(37–42), 2010–2014 (2009)
Article
Google Scholar
A. Steel, G. Greaves, A. Firth, A. Owen, Photodissolution of silver in arsenic sulphide films—an exafs study. J. Non-Cryst. Solids 107, 155–162 (1989)
Article
Google Scholar