Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices


The effect of electrodeposition technique on CdS thickness incorporated in CdS/CdTe-based solar cell has been investigated using all-electrodeposited g/FTO/n-CdS/n-CdTe/p-CdTe multilayer device configuration. The optical, morphological and structural properties of the electroplated CdS were investigated for CdS thicknesses between 50 and 200 nm. The observed CdS bandgap ranges between 2.42 and 2.46 eV. The morphological analysis shows full coverage of underlying g/FTO substrate for all CdS thicknesses except for the 50 nm which shows the presence of gap in-between grains. The structural analysis shows a preferred orientation of H(101) for all the CdS thicknesses except the 50 nm thick CdS which shows either a weak crystallinity or an amorphous nature. The fabricated solar cell shows a maximum conversion efficiency of ~11 % using CdS thickness ranging between 100 and 150 nm. These results show that although low CdS thickness is desirable for photovoltaic application, the effect of nucleation mechanism of deposition technique should be taken into consideration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)

    Google Scholar 

  2. 2.

    I. Dharmadasa, P. Bingham, O. Echendu, H. Salim, T. Druffel, R. Dharmadasa, G. Sumanasekera, R. Dharmasena, M. Dergacheva, K. Mit, K. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings 4(3), 380–415 (2014)

    Article  Google Scholar 

  3. 3.

    J.E. Granata, J.R. Sites, Effect of CdS thickness on CdS/CdTe quantum efficiency, in Conference Record Twenty Fifth IEEE Photovoltaic Specialists Conference 1996 (2000), pp. 853–856

  4. 4.

    J.S. Lee, Y.K. Jun, H.B. Im, Effects of CdS film thickness on the photovoltaic properties of sintered Cds/Cdte solar cells. J. Electrochem. Soc. 134(1), 248–251 (1987)

    Article  Google Scholar 

  5. 5.

    T. Dedova, O. Volobujeva, M. Krunks, V. Mikli, I. Gromyko, A. Katerski, A. Mere, Growth of ZnO rods on FTO electrodes by spray pyrolysis. IOP Conf. Ser. Mater. Sci. Eng. 49(1), 012001 (2013)

    Article  Google Scholar 

  6. 6.

    N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin films using ammonium thiosulphate as the sulphur source. J. Mater. Sci. Mater. Electron. 26(4), 2418–2429 (2015)

    Article  Google Scholar 

  7. 7.

    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52(4), 247–279 (2006)

    Article  Google Scholar 

  8. 8.

    S.D. Sathaye, A.P.B. Sinha, Studies on thin films of cadmium sulphide prepared by a chemical deposition method. Thin Solid Films 37(1), 15–23 (1976)

    Article  Google Scholar 

  9. 9.

    C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, Y. Jiang, Chlorine-doped n-type CdS nanowires with enhanced photoconductivity. Nanotechnology 21, 505203 (2010)

    Article  Google Scholar 

  10. 10.

    A.A. Ojo, I.M. Dharmadasa, Investigation of electronic quality of electrodeposited cadmium sulphide layers from thiourea precursor for use in large area electronics. Mater. Chem. Phys. 180, 1–15 (2016)

    Article  Google Scholar 

  11. 11.

    S. Caroli, V.K. Sharma, R. Parsons, J. Jordan, M. Dekker, Petr Vany´sek Table 1 electrochemical series (continued) Table 1 alphabetical listing (continued) (1989), pp. 23–33

  12. 12.

    A.A. Ojo, I.M. Dharmadasa, Electrodeposition of fluorine-doped cadmium telluride for application in photovoltaic device fabrication. Mater. Res. Innov. 19(7), 470–476 (2015)

    Article  Google Scholar 

  13. 13.

    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)

    Article  Google Scholar 

  14. 14.

    H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. J. Mater. Sci. Mater. Electron. 26(5), 3119–3128 (2015)

    Article  Google Scholar 

  15. 15.

    J. Woodcock, A. Turner, M. Ozsan, J. Summers, Thin film solar cells based on electrodeposited CdTe, in Photovoltaic Specialists Conference 1991, Conference Record Twenty Second IEEE (1991), pp. 842–847

  16. 16.

    J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  17. 17.

    M.A. Redwan, E.H. Aly, L.I. Soliman, A.A. El-Shazely, H.A. Zayed, Characteristics of n-Cd0.9 Zn0.1S/p-CdTe heterojunctions. Vacuum 69(4), 545–555 (2003)

    Article  Google Scholar 

  18. 18.

    N.S. Das, P.K. Ghosh, M.K. Mitra, K.K. Chattopadhyay, Effect of film thickness on the energy band gap of nanocrystalline CdS thin films analyzed by spectroscopic ellipsometry. Phys. E Low-Dimensional Syst. Nanostruct. 42(8), 2097–2102 (2010)

    Article  Google Scholar 

  19. 19.

    A.K. Mohsin, N. Bidin, Effect of CdS thickness on the optical and structural properties of TiO2/CdS nanocomposite film. Adv. Mater. Res. 1107, 547–552 (2015)

    Article  Google Scholar 

  20. 20.

    J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95(3), 816–820 (2011)

    Article  Google Scholar 

  21. 21.

    M.A. Tashkandi, W.S. Sampath, Eliminating pinholes in CSS deposited CdS films, in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE (2012), pp. 143–146

  22. 22.

    A. Chandran, K.C. George, Phase instability and defect induced evolution of optical properties in Cd rich-CdS nanoparticles. J. Appl. Phys. 115(16), 164309 (2014)

    Article  Google Scholar 

  23. 23.

    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510 (1961)

    Article  Google Scholar 

  24. 24.

    A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13(5), 839–846 (2000)

    Article  Google Scholar 

  25. 25.

    S.G. Kumar, K.S.R.K. Rao, Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 7(1), 45–102 (2014)

    Article  Google Scholar 

  26. 26.

    J. Verschraegen, M. Burgelman, J. Penndorf, Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480–481, 307–311 (2005)

    Article  Google Scholar 

Download references


The main author would like to thank Sheffield Hallam University, Ekiti State University, TETFund Nigeria for their support.

Author information



Corresponding author

Correspondence to A. A. Ojo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ojo, A.A., Salim, H.I., Olusola, O.I. et al. Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J Mater Sci: Mater Electron 28, 3254–3263 (2017). https://doi.org/10.1007/s10854-016-5916-0

Download citation


  • TeO2
  • Electrolytic Bath
  • Cadmium Sulphide
  • CdCl2 Treatment
  • Parasitic Absorption