Skip to main content
Log in

Spectroscopic investigations of Sm3+ doped Ca0.5La(MoO4)2 phosphor for solid state lighting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Sm3+- doped Ca0.5La(MoO4)2 were successfully synthesized by the solid state reaction method. Indexed powder X-Ray diffraction pattern suggests the scheelite tetragonal crystal structure. Surface Morphology of the sample shows polyhedral morphology and the average particle size estimated from SEM image is 5.5 µm. The energy dispersive X-ray analysis confirms the existence of Ca, La, Mo, O, and Sm elements. The room temperature photoluminescence (PL) emission spectra of Sm3+- doped Ca0.5La(MoO4)2 with various concentrations upon 404 nm excitation were recorded. The PL emission spectra show three intense emission peaks at 565, 600 and 647 nm were owing to the f–f electronic transitions of 4f electrons of Sm3+ attributed to the transitions 4G5/26H5/2, 4G5/26H7/2 and 4G5/26H9/2 respectively. Among them, bright orange-red visible emission is obtained due to 4G5/26H9/2 transition. The decay time and color chromaticity co-ordinates were estimated. From the obtained results, the prepared powder phosphor Ca0.5La(MoO4)2:Sm3+ stands as a suitable candidate for the display and solid state lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.M. Kaczmarek, R.V. Deun, Chem. Soc. Rev. 42, 8835–8848 (2013)

    Article  Google Scholar 

  2. S. Abtmeyer, R. Pazik, J.R. Wiglusz, M. Malecka, G.A. Seisenbaeva, V.G. Kessler, Inorg. Chem. 53, 943–951 (2014)

    Article  Google Scholar 

  3. Y. Shi, B. Liu, B. Liu, C. Li, Z. Wang, RSC Adv. 5, 95953–95959 (2015)

    Article  Google Scholar 

  4. S. Gai, C. Li, P. Yang, J. Lin, Chem. Rev. 114, 2343–2389 (2014)

    Article  Google Scholar 

  5. V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 26, 842–852 (2015)

    Google Scholar 

  6. H. Deng, Z. Zhao, J. Wang, Z. Hei, M. Li, H.M. Noh, J.H. Jeong, R. Yu, J. Solid State Chem. 228, 110–116 (2015)

    Article  Google Scholar 

  7. R. Krishnan, J. Thirumalai, I.B.S. Banu, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 24, 4774–4781 (2013)

    Google Scholar 

  8. V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, Electron. Mater. Lett. 12, 32–47 (2016)

    Article  Google Scholar 

  9. Y. Wang, C. Lin, H. Zheng, D. Sun, L. Li, B. Chen, J. Alloys Compd. 559, 123–128 (2013)

    Article  Google Scholar 

  10. R. Krishnan, J. Thirumalai, V. Mahalingam, S. Mantha, J. Mater. Sci.: Mater. Electron. 26, 8568–8580 (2015)

    Google Scholar 

  11. V. Mahalingam, J. Thirumalai, R. Krishnan, S. Mantha, Spectrochim. Acta A 152, 172–180 (2016)

    Article  Google Scholar 

  12. L. Wang, B.K. Moon, S.H. Park, J.H. Kim, J. Shi, K.H. Kim, J.H. Jeong, RSC Adv. 5, 89290–89298 (2015)

    Article  Google Scholar 

  13. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, New York, 1994)

    Book  Google Scholar 

  14. R. Krishnan, J. Thirumalai, V. Mahalingam, S. Mantha, M. Lavanya, Mater. Chem. Phys. 162, 41–49 (2015)

    Article  Google Scholar 

  15. V. Mahalingam, J. Thirumalai, J. Mater. Sci.: Mater. Electron. 27, 8884–8890 (2016)

    Google Scholar 

  16. X. He, J. Zhou, N. Lian, J. Sun, M. Guan, J. Lumin. 130, 743–747 (2010)

    Article  Google Scholar 

  17. Y.C. Fang, S.Y. Chu, P.C. Kao, Y.M. Chuang, Z.L. Zeng, J. Electrochem. Soc. 158, J1–J5 (2011)

    Article  Google Scholar 

  18. G.M. Kuz’micheva, A.V. Eremin, V.B. Rybakov, K.A. Subbotin, E.V. Zharikov, Rus. J. Inorg. Chem. 55, 1448–1453 (2009)

    Article  Google Scholar 

  19. R.D. Shannnon, Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  20. G.S.R. Raju, E. Pavitra, Y.H. Ko, J.S. Yu, J. Mater. Chem. 22, 15562–15569 (2012)

    Article  Google Scholar 

  21. P.S. Dutta, A. Khanna, ECS J. State Sci. Technol 2, R3153–R3167 (2013)

    Article  Google Scholar 

  22. Q. Xiao, Q. Zhou, M. Li, J. Lumin. 130, 1092–1094 (2010)

    Article  Google Scholar 

  23. G.S.R. Raju, S. Buddhudu, Spectrochim. Acta A 70, 601–605 (2008)

    Article  Google Scholar 

  24. B.R. Judd, Phys. Rev. 127, 750–761 (1962)

    Article  Google Scholar 

  25. G.S. Ofelt, J. Chem. Phys. 37, 511–520 (1962)

    Article  Google Scholar 

  26. Z. Li, Y. Wang, J. Cao, Y. Jiang, X. Zhao, Z. Meng, J. Rare Earths 34, 143–147 (2016)

    Article  Google Scholar 

  27. G. Blasse, Philips Res. Rep. 24, 131–144 (1969)

    Google Scholar 

  28. A.K. Ambast, J. Goutam, S. Som, S.K. Sharma, Spectrochim. Acta A 122, 93–99 (2014)

    Article  Google Scholar 

  29. S. Dutta, S. Som, S.K. Sharma, Dalton Trans. 42, 9654–9661 (2013)

    Article  Google Scholar 

  30. V. Mahalingam, J. Thirumalai, RSC Adv. 6, 80390–80397 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Science and Engineering Research Board–SERB, New Delhi for funding this work under the SERB Project SR/FTP/PS—135/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Thirumalai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, V., Syed Gulam Ambia, M., Thirumalai, J. et al. Spectroscopic investigations of Sm3+ doped Ca0.5La(MoO4)2 phosphor for solid state lighting applications. J Mater Sci: Mater Electron 28, 2838–2845 (2017). https://doi.org/10.1007/s10854-016-5867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5867-5

Keywords

Navigation