Skip to main content
Log in

Improved magnetoelectric effect in lead free [72.5(Bi1/2Na1/2TiO3)–22.5(Bi1/2K1/2TiO3)–5(BiMg1/2Ti1/2O3)]: CoFe2O4 particulate nanocomposites prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Non lead based ternary solid solution 72.5(Bi1/2Na1/2TiO3)–22.5(Bi1/2K1/2TiO3)–5(BiMg1/2Ti1/2O3) with high piezoelectric coefficient (d 33 ) of 180 pC/N has been prepared. Further, magnetoelectric (ME) particulate composites (1 − x)[72.5(BNT)-22.5(BKT)-5(BMgT)] − x CoFe2O4 (CFO) (x = 0, 0.1, 0.2, 0.3) were synthesized and a systematic study of structural, ferroelectric, magnetic and ME properties was undertaken. Large ME voltage coefficient (α E ) values accompanied by large piezoelectric coefficient and the adequate interface contact between the magnetic and electric phases were observed in these composites. The composite with x = 0.2, showed the large value of ME voltage coefficient (α E ) ~112 mV/cmOe due to higher d 33 (~125 pC/N) of composite. The present study demonstrate a new environmental-friendly ME particulate composite for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nat. Lond. 442, 759–765 (2006)

    Article  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  3. D.K. Pradhan, R.N.P. Chaudary, T.K. Nath, Magnetoelectric properties of PbZr0.53Ti0.47O3–Ni0.65Zn0.35Fe2O4 multiferroic nanocomposites. Appl. Nanosci. 2, 261–273 (2012)

    Article  Google Scholar 

  4. Q. Jiang, F. Liu, H. Yan, H. Ning, Z. Libor, K.Q. Zhang, K.M. Cain, M.J. Reece, Magneto-electric properties of multiferroic Pb(Zr0.52Ti0.48)O3–NiFe2O4 nanoceramic composites. J. Am. Ceram. Soc. 94, 2311–2314 (2011)

    Article  Google Scholar 

  5. L.P. Curecheriu, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, P. Postolache, A. Ianculescu, P. Nanni, Functional properties of BaTiO3–Ni0.5Zn0.5Fe2O4 magnetoelectric ceramics prepared from powders with core-shell structure. J. Appl. Phys. 107, 104106 (2010)

    Article  Google Scholar 

  6. B. Sarkar, B. Dalal, D.A. Vishal, C. Kaushik, M. Amitava, S.K. De, Magnetic properties of mixed spinel BaTiO3-NiFe2O4 composites. J. Appl. Phys. 115, 123908 (2014)

    Article  Google Scholar 

  7. H. Yang, G. Zhang, Y. Lin, F. Wang, Preparation and characterization of BaTiO3–Bi0.5Na0.5TiO3/BiY2Fe5O12 laminate composites. J. Mater. Sci. Mater. Electron. 27, 6586–6591 (2016)

    Article  Google Scholar 

  8. M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.M. Liu, X.P. Jiang, C.W. Nan, Resonance magnetoelectric effect in bulk composites of lead Zirconate Titanate and nickel ferrite. J. Appl. Phys. 95, 8069 (2004)

    Article  Google Scholar 

  9. A. Gupta, A. Huang, S. Shannigrahi, R. Chatterjee, Improved magnetoelectric coupling in Mn and Zn doped CoFe2O4–PbZr0.52Ti0.48O3 particulate composite. Appl. Phys. Lett. 98, 112901 (2011)

    Article  Google Scholar 

  10. G. Sreenivasulu, V. Hari Babu, G. Markandeyulu, B.S. Murty, Magnetoelectric effect of (100-x)BaTiO3-xNiFe1.98O4, x = 20–80 wt% particulate nanocomposites. Appl. Phys. Lett. 94, 112902 (2009)

    Article  Google Scholar 

  11. T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. J. App. Phys. 30, 2236–2239 (1991)

    Article  Google Scholar 

  12. T. Takenaka, H. Nagata, Y. Hiruma, Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3-based bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595 (2009)

    Article  Google Scholar 

  13. J. Hao, B. Shen, J. Zhai, C. Liu, X. Li, X. Gao, Switching of morphotropic phase boundary and large strain response in lead-freeternary (Bi0.5Na0.5)TiO3–(K0.5Bi0.5)TiO3–(K0.5Na0.5)NbO3 system. J. Appl. Phys. 113, 114106 (2013)

    Article  Google Scholar 

  14. X.X. Wang, S.H. Choy, X.G. Tang, H.L.W. Chan, Dielectric behavior and microstructure of (Bi12Na12)TiO3–(Bi12K12)TiO3–BaTiO3 lead-free piezoelectric ceramics. J. Appl. Phys. 97, 104101 (2005)

    Article  Google Scholar 

  15. P. Jarupoom, E. Patterson, B. Gibbons, G. Rujijanagul, R. Yimnirun, D. Cann, Lead-free ternary perovskite compounds with large electromechanical strains. Appl. Phys. Lett. 99, 152901 (2011)

    Article  Google Scholar 

  16. B.S. Narendra, J.H. Hsu, Y.S. Chen, J.G. Lin, Magnetoelectric response in lead-free multiferroic NiFe2O4–Na0.5Bi0.5TiO3 composites. J. Appl. Phys. 109, 07D904 (2011)

    Article  Google Scholar 

  17. A. Srinivas, R.V. Krishnaiah, T. Karthik, S. Suresh, S.V.Kamat Asthana, Observation of direct and indirect magnetoelectricity in lead free ferroelectric (Na0.5Bi0.5TiO3)–magnetostrictive (CoFe2O4) particulate composite. Appl. Phys. Lett. 101, 082902 (2012)

    Article  Google Scholar 

  18. M. Tyagi, M. Kumari, R. Chatterjee, P. Sharma, Microstructure-property relationship in magnetoelectric bulk composites. Appl. Phys. Lett. 106, 202904 (2015)

    Article  Google Scholar 

  19. K. Chang, W. Feng, L.Q. Chen, Effect of second-phase particle morphology on grain growth kinetics. Acta Mater. 57, 5229–5236 (2009)

    Article  Google Scholar 

  20. J.F. Scott, Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008)

    Article  Google Scholar 

  21. D.K. Pradhan, S.K. Barik, S. Sahoo, V.S. Puli, R.S. Katiyar, Investigations on electrical and magnetic properties of Multiferroic [(1-x)Pb(Fe0.5Nb0.5)O3-xNi0.65Zn0.35Fe2O4] composites. J. Appl. Phys. 113, 144104 (2013)

    Article  Google Scholar 

  22. M. Lorenz, V. Lazenka, P. Schwinkendorf, F. Bern, M. Ziese, H. Modarresi, A. Volodin, M.J.V. Bael, K. Temst, A. Vantomme, G. Marius, Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: strain engineering and magnetoelectric coupling. J. Phys. D Appl. Phys. 47, 135303 (2014)

    Article  Google Scholar 

  23. C.M. Kanamadi, L.B. Pujari, B.K. Chougule, Dielectric behaviour and magnetoelectric effect in xNi0.8Cu0.2Fe2O4 + (1-x)Ba0.9Pb0.1Ti0.9Zr0.1O3 ME composites. J. Magn. Magn. Matter. 295, 139 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by University Grant Commission (UGC), India, under Grant 40/446/2011 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mintu Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, M., Sharma, P., Kumari, M. et al. Improved magnetoelectric effect in lead free [72.5(Bi1/2Na1/2TiO3)–22.5(Bi1/2K1/2TiO3)–5(BiMg1/2Ti1/2O3)]: CoFe2O4 particulate nanocomposites prepared by sol–gel method. J Mater Sci: Mater Electron 28, 2812–2816 (2017). https://doi.org/10.1007/s10854-016-5862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5862-x

Keywords

Navigation