Skip to main content
Log in

Optical limiting behavior correlated with the surface and etching time of irradiated nuclear track detector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of different laser incident intensity on the optical characteristics of PM-355 nuclear track detector have been studied by using photoluminescence (PL) and UV–visible spectroscopic techniques. The polymers were irradiated with alpha particles with close contact to 241Am (in contact with a mean energy 5.49 MeV) and then exposed to continues waveguide (cw) laser with different incident intensity. A noticeable decrease in the photoluminescence spectral intensity was observed with increasing laser incident intensity. From the UV–visible spectra, it is found that a shift in the absorption edge towards a longer wavelength with increasing laser incident intensity can be readily observed. The absorption peak with increasing incident intensity is seen to change into a broad one. The optical band gaps determined from the UV–visible spectra were found to decrease with the increase of cw laser doses. The calculations were made of the number of carbon atoms per conjugation length, N and number of carbon atoms per clusters, M embedded in the network of polymers. The effective of etching time on optical power limiting behavior of sample was also investigated. The optical power limiting behavior was found to vary with the etching time. It also shows a very good optical limiting behavior with a limiting threshold varying from 16.6 to 19.9 mW. These results indicate that the PM-355 nuclear track detector is a promising candidate for applications in the nonlinear optic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. El Ghazaly, H.E. Hassan, Results Phys. 4, 40 (2014)

    Article  Google Scholar 

  2. P.C. Kalsi, C. Agarwal, J. Mater. Sci. 43, 2865 (2008)

    Article  Google Scholar 

  3. T. Sharma, S. Aggarwal, A. Sharma, S. Kumar, D. Kanjilal, S.K. Deshpande, P.S. Goyal, J. Appl. Phys. 102, 063527 (2007)

    Article  Google Scholar 

  4. M.F. Zaki, J. Phys. D Appl. Phys. 41, 75404 (2008)

    Article  Google Scholar 

  5. T. Sharma, S. Aggarwal, A. Sharma, S. Kumar, V.K. Mittal, P.C. Kalsi, V.K. Manchanda, Radiat. Eff. Defects Solids 163, 173 (2008)

    Google Scholar 

  6. K.N. Yu, F.M.F. Ng, D. Nikezic, Radiat. Meas. 40, 380 (2005)

    Article  Google Scholar 

  7. M.A. Rana, Nucl. Instr. Methods Phys. Res. A 592, 354 (2008)

    Article  Google Scholar 

  8. H. Dietrich, Radiat. Meas. 44, 283 (2009)

    Article  Google Scholar 

  9. T.M. Salman, A.Y. Al-Ahmad, H.A. Badran, C.A. Emshary, Phys. Scr. 90, 085302 (2015)

    Article  Google Scholar 

  10. A.M. Abdul-Kader, A. El-Badry Basma, M.F. Zaki Hegazy, T.M. Hashem, M. Hany, Philos. Mag. 90, 2543 (2010)

    Article  Google Scholar 

  11. S. Singh, S. Prasher, Radiat. Meas. 40, 50 (2005)

    Article  Google Scholar 

  12. V. Kumar, R.G. Sonkawade, S.K. Chakarvarti, P. Kulriya, K. Kant, N.L. Singh, A.S. Dhaliwal, Vacuum 86, 275 (2011)

    Article  Google Scholar 

  13. N. Dwaikat, T. Iida, F. Sato, Y. Kato, I. Ishikawa, W. Kada, A. Kishi, M. Sakai, Y. Ihara, Nucl. Instr. Methods Phys. Res. A 572, 826 (2007)

    Article  Google Scholar 

  14. M. Mujahid, D.S. Srivastava, G. Shiuli, D.K. Avasthi, Radiat. Phys. Chem. 74, 118 (2005)

    Article  Google Scholar 

  15. A.M. Abdul-Kader, J. Nucl. Mater. 435, 231 (2013)

    Article  Google Scholar 

  16. H.A. Badran, K.I. Ajeel, H. Gazy Lazim, Mater. Res. Bull. 76, 422 (2016)

    Article  Google Scholar 

  17. H.A. Badran, M.F. Al-Mudhaffer, Q.M. Hassan, A.Y. Al-Ahmad, Chalcogenide Lett. 9, 483 (2012)

    Google Scholar 

  18. H.G. Lazim, K.I. Ajeel, H.A. Badran, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 145, 598 (2015)

    Article  Google Scholar 

  19. S. Gupta, D. Choudhary, A. Sarma, J. Polym. Sci. B: Polym. Phys. 38, 1589 (2000)

    Article  Google Scholar 

  20. V. Kumar, R.G. Sonkawade, A.S. Dhaliwal, Nucl. Instr. Methods Phys. Res. B 290, 59 (2012)

    Article  Google Scholar 

  21. M.F. Zaki, T.M. Hegazy, D.H. Taha, Chin. J. Phys. 52, 1364 (2014)

    Google Scholar 

  22. A. Saha, V. Chakraborty, Nucl. Instr. Methods B 168, 245 (2000)

    Article  Google Scholar 

  23. R. Mishra, S.P. Tripathy, D. Sinha, K.K. Dwivedi, S. Ghosh, D.T. Khating, Nucl. Instr. Methods B 168, 59 (2000)

    Article  Google Scholar 

  24. H.A. Badran, Appl. Phys. B 119, 319 (2015)

    Article  Google Scholar 

  25. H.A. Badran, H.A. Sultan, Q.M. Ali Hassan, J. Mater. Sci.: Mater. Electron. 27, 6735 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyadh Ch. Abul-Hail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abul-Hail, R.C. Optical limiting behavior correlated with the surface and etching time of irradiated nuclear track detector. J Mater Sci: Mater Electron 28, 2311–2316 (2017). https://doi.org/10.1007/s10854-016-5798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5798-1

Keywords

Navigation