Skip to main content
Log in

Investigation on the effect of Ti doping on dielectric, impedance and magnetic properties of Ba2+-substituted BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ti4+ substituted (Bi0.9Ba0.1)(Fe1−yTiy)O3 ceramics (0.0 ≤ y ≤ 0.15) were synthesized by auto combustion method. Rietveld refinement reveals a transformation from rhombohedral to tetragonal with the Ti4+ doping content at y = 0.05. Effect of Ti4+ doping on the dielectric properties of Ba2+ doped BiFeO3 was studied from room temperature to 400 °C in wide range of frequency. Initially, the dielectric loss was found to increase in ceramics with low Ti4+ content and then after decreases with further increase in Ti4+ concentration. The electrical conductivity of Bi0.9Ba0.1Fe1−yTiyO3 ceramics obeys the Arrhenius law, revealing the controlled conduction mechanism of oxygen vacancies at the higher range of temperature. The highest d 33 value of 15.8 pC/N was exhibited by the composition with Ti4+ doping at y = 0.05. Ti4+ doped BBFO ceramics showed similar behavior of weak ferromagnetism as Bi0.9Ba0.1FeO3. Also, magnetization was found to increase with Ti4+ doping content up to 0.05 and then decreases with further increase in doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006). doi:10.1038/nature05023

    Article  Google Scholar 

  2. W. Prellier, M.P. Singh, P. Murugavel, J. Phys.: Condens. Matter 17, 803–832 (2005). doi:10.1088/0953-8984/17/30/R01

    Google Scholar 

  3. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007). doi:10.1038/nmat1805

    Article  Google Scholar 

  4. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008). doi:10.1103/PhysRevLett.101.247602

    Article  Google Scholar 

  5. Y.L. Han, W.F. Liu, P. Wu, X.L. Xu, M.C. Guo, G.H. Rao, S.Y. Wang, J. Alloys Compd. 661, 115–121 (2015). doi:10.1016/j.jallcom.2015.11.157

    Article  Google Scholar 

  6. G. Catalan, J.F. Scott, Adv. Mater. 2, 2463–2485 (2009). doi:10.1002/adma.200802849

    Article  Google Scholar 

  7. C. Nayek, A. Tamilselvan, C. Thirmal, P. Murugavel, S. Balakumar, J. Appl. Phys. 115, 073902 (2014). doi:10.1063/1.4865958

    Article  Google Scholar 

  8. K.C. Verma, R.K. Kotnala, RSC Adv. 6, 57727 (2016). doi:10.1039/C6RA12949H

    Article  Google Scholar 

  9. M.A. Basith, O. Kurni, M.S. Alam, B.L. Sinha, B. Ahmmad, J. Appl. Phys. 115, 024102 (2014). doi:10.1063/1.4861151

    Article  Google Scholar 

  10. M. Kumar, K.L. Yadav, J. Appl. Phys. 100, 074111 (2006). doi:10.1063/1.2349491

    Article  Google Scholar 

  11. Y.H. Gu, Y. Wang, F. Chen, H.L.W. Chan, W.P. Chen, J. Appl. Phys. 108, 094112 (2010). doi:10.1063/1.3506526

    Article  Google Scholar 

  12. P. Kumar, C. Panda, M. Kar, Smart Mater. Struct. 24, 045028 (2015). doi:10.1088/0964-1726/24/4/045028

    Article  Google Scholar 

  13. G.F. Cheng, Y.J. Ruan, W. Liu, X.S. Wu, Phys. B 468, 81–84 (2015). doi:10.1016/j.physb.2015.04.023

    Article  Google Scholar 

  14. H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, H. Yan, J. Alloys Compd. 582, 273–276 (2014). doi:10.1016/j.jallcom.2013.07.187

    Article  Google Scholar 

  15. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  16. P. Debye, Ann. Phys. 351, 809–823 (1915). doi:10.1002/andp.19153510606

    Article  Google Scholar 

  17. H. Singh, K.L. Yadav, J. Phys.: Condens. Matter 23, 385901 (2011). doi:10.1088/0953-8984/23/38/385901

    Google Scholar 

  18. H. Singh, K.L. Yadav, Mater. Chem. Phys. 132, 17–21 (2012). doi:10.1016/j.matchemphys.2011.08.058

    Article  Google Scholar 

  19. L. Benguigui, Solid State Commun. 11, 825–828 (1972). doi:10.1016/0038-1098(72)90280-3

    Article  Google Scholar 

  20. P.K. Patel, K.L. Yadav, H. Singh, A.K. Yadav, J. Alloy Comp. 591, 224–229 (2014). doi:10.1016/j.jallcom.2013.12.119

    Article  Google Scholar 

  21. A.K. Behera, N.K. Mohanty, B. Behera, P. Nayak, Adv. Mat. Lett. 4, 141–145 (2013). doi:10.5185/amlett.2012.6359

    Article  Google Scholar 

  22. H. Singh, A. Kumar, K.L. Yadav, Mat. Sci. Eng. B 176, 540–547 (2011). doi:10.1016/j.mseb.2011.01.010

    Article  Google Scholar 

  23. M. Kumar, S. Shankar, O. Parkash, O.P. Thakur, J. Mater. Sci.: Mater. Electron. 25, 888–896 (2014). doi:10.1007/s10854-013-1661-9

    Google Scholar 

  24. Z. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010). doi:10.1088/0022-3727/43/44/445403

    Article  Google Scholar 

  25. J. Wang, B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003). doi:10.1126/science.1080615

    Article  Google Scholar 

  26. C.W. Bark, S. Ryu, Y.M. Koo, H.M. Jang, H.S. Youn, Appl. Phys. Lett. 90, 022902 (2007). doi:10.1063/1.2430678

    Article  Google Scholar 

  27. V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007). doi:10.1063/1.2731312

    Article  Google Scholar 

  28. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766–772 (2007). doi:10.1021/nl063039w

    Article  Google Scholar 

  29. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007). doi:10.1063/1.2768201

    Article  Google Scholar 

  30. B. Bhushan, Z. Wang, J.V. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, J. Am. Ceram. Soc. 95, 1985–1992 (2012). doi:10.1111/j.1551-2916.2012.05132.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Uniyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Uniyal, P. Investigation on the effect of Ti doping on dielectric, impedance and magnetic properties of Ba2+-substituted BiFeO3 ceramics. J Mater Sci: Mater Electron 27, 12539–12549 (2016). https://doi.org/10.1007/s10854-016-5789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5789-2

Keywords

Navigation