Skip to main content
Log in

Study of electrical properties of hafnium oxide thin film based metal–insulator–metal capacitors: pre and post metallic annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal–insulator–metal (MIM) capacitors having hafnium oxide (HfO2) high-κ dielectric thin film were fabricated and subsequently studied for their electrical and micro-structural properties. The MIM capacitors were found to possess low leakage current density of about 2.7 × 10−9 A/cm2 at −1 V, high capacitance density of about 18.1 fF/μm2 at 0 V, 1 MHz and improved quadratic voltage coefficient of capacitance (VCC) of about 120 ppm/V2 at 1 MHz. The electrical properties of MIM capacitors are found to be governed by Frenkel–Poole mechanism at low and intermediate fields (<1500 kV/cm) and by Schottky emission at high fields (>1500 kV/cm). The dielectric thin films have amorphous structure which has been correlated with the electrical properties of MIM capacitors. The HfO2 thin film possess good micro-structural properties in term of low roughness, which is in agreement with the obtained electrical properties of thin film based MIM capacitors. Further, post metallic annealing of MIM capacitors results in decrease in leakage current density to ~5.1 × 10−10 A/cm2 at −1 V, increase in capacitance density to ~23.1 fF/μm2 at 0 V, 1 MHz and improvement in quadratic VCC to reach a value of ~95 ppm/V2 at 1 MHz. The electrical characteristics of as-fabricated and annealed MIM capacitors are in accordance with the International Technology Roadmap for Semiconductor 2013 guidelines. The obtained electrical properties suggest the possible use of MIM capacitors in analog/mixed-signal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Babcock, S.G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, B. El-Kareh, IEEE Electron Dev. Lett. 22, 230 (2001)

    Article  Google Scholar 

  2. S.V. Huylenbroeck, S. Decoutere, R. Venegas, S. Jenei, G. Winderickx, IEEE Electron Dev. Lett. 23, 191 (2002)

    Article  Google Scholar 

  3. C.H. Ng, C.-S. Ho, S.-F.S. Chu, S.-C. Sun, IEEE Trans. Electron Dev. 52, 1399 (2005)

    Article  Google Scholar 

  4. C.H. Ng, S.F. Chu, IEEE Electron Dev. Lett. 23, 529 (2002)

    Article  Google Scholar 

  5. T. Remmel, R. Ramprasad, J. Walls, in Proceedings of the International. Reliability Physics Symposium (2003), pp. 277–281

  6. C.H. Cheng, S.H. Lin, K.Y. Jhou, W.J. Chen, C.P. Chou, F.S. Yeh, J. Hu, M. Hwang, T. Arikado, S.P. McAlister, A. Chin, IEEE Electron Dev. Lett. 29, 845 (2008)

    Article  Google Scholar 

  7. S.-H. Wu, C.-K. Deng, T.-H. Hou, B.-S. Chiou, Jpn. J. Appl. Phys. 49, 04DB16 (2010)

    Google Scholar 

  8. S.J. Kim, B.J. Cho, M.F. Li, X. Yu, C. Zhu, A. Chin, D.-L. Kwong, IEEE Electron Dev. Lett. 24, 387 (2003)

    Article  Google Scholar 

  9. L. Zhang, W. He, D.S.H. Chan, B.J. Cho, IEEE Electron Dev. Lett. 31, 17 (2010)

    Article  Google Scholar 

  10. H. Hu, C. Zhu, Y.F. Lu, M.F. Li, B.J. Cho, W.K. Choi, IEEE Electron Dev. Lett. 23, 514 (2002)

    Article  Google Scholar 

  11. X. Yu, C. Zhu, H. Hu, A. Chin, M.F. Li, B.J. Cho, D.-L. Kwong, P.D. Foo, M.B. Yu, IEEE Electron Dev. Lett. 24, 63 (2003)

    Article  Google Scholar 

  12. T.-H. Perng, C.-H. Chien, C.-W. Chen, P. Lehnen, C.-Y. Chang, Thin Solid Films 469–470, 345 (2004)

    Article  Google Scholar 

  13. C. Wenger, M. Lukosius, H.-J. Mussig, G. Ruhl, S. Pasko, C. Lohe, J. Vac. Sci. Technol. B 27, 286 (2009)

    Article  Google Scholar 

  14. M. Lukosius, Ch. Walczyk, M. Fraschke, D. Wolansky, H. Richter, Ch. Wenger, Thin Solid Films 518, 4380 (2010)

    Article  Google Scholar 

  15. International Technology Roadmap for Semiconductors (Semiconductor Industry Association (SIA), 2013)

  16. A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci. Mater. Electron. 25, 3257 (2014)

    Article  Google Scholar 

  17. A. Srivastava, O. Mangla, V. Gupta, IEEE Trans. Nanotechnol. 14, 612 (2015)

    Article  Google Scholar 

  18. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  19. O. Mangla, A. Srivastava, Y. Malhotra, K. Ostrikov, J. Vac. Sci. Technol. B 32, 03D107 (2014)

    Article  Google Scholar 

  20. R. Padmanabhan, N. Bhat, S. Mohan, IEEE Trans. Electron Dev. 59, 1364 (2012)

    Article  Google Scholar 

  21. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instr. 78, 013705 (2007)

    Article  Google Scholar 

  22. J. Greer, in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, Chapter 9, ed. by R. Eason (Wiley, New York, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Mangla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangla, O., Gupta, V. Study of electrical properties of hafnium oxide thin film based metal–insulator–metal capacitors: pre and post metallic annealing. J Mater Sci: Mater Electron 27, 12527–12532 (2016). https://doi.org/10.1007/s10854-016-5783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5783-8

Keywords

Navigation