3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures

Abstract

Nanostructured glass-supported thin films of titanium nitride (TiN) were prepared by reactive magnetron sputtering at different substrate temperatures (from 25 to 400 °C). The surface topography of such films was examined by atomic force microscopy (AFM). The obtained 3-D AFM images was divided into motifs of significant peaks and pits using MountainsMap® Premium software, which uses the watershed segmentation algorithm. In the motif analysis, parameters consistent with ISO 25178-2: 2012 and that characterize essential characteristics of the segmented motifs in terms of surface dimensions, volume, curvature, shape, structure, etc. were calculated, and the highest and lowest points of motifs were localized. This study allowed us to perform a quantitative correlation between synthetic conditions of TiN thin films and their 3-D micro-textured surface properties. Concretely, we found a non-monotonic dependence of the surface morphology properties of the thin films on the substrate temperature during the sample deposition, obtaining the most regular surface at a substrate temperature of 250 °C and the most irregular topography at the substrate temperature of 400 °C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    S. Stach, Ż. Garczyk, Ş. Ţălu, S. Solaymani, A. Ghaderi, R. Moradian, N.B. Nezafat, S.M. Elahi, H. Gholamali, J. Phys. Chem. C 119(31), 17887 (2015)

    Article  Google Scholar 

  2. 2.

    D. Dallaeva, Ş. Ţălu, S. Stach, P. Škarvada, P. Tománek, L. Grmela, Appl. Surf. Sci. 312, 81 (2014)

    Article  Google Scholar 

  3. 3.

    M. Molamohammadi, A. Arman, A. Achour, B. Astinchap, A. Ahmadpourian, A. Boochani, S. Naderi, A. Ahmadpourian, J. Mater. Sci. Mater. Electron. 26(8), 5964 (2015)

    Article  Google Scholar 

  4. 4.

    S. Ţălu, S. Stach, T. Ghodselahi, S. Solaymani, A. Ghaderi, A. Boochani, Ż. Garczyk, J. Phys, Chem. B 119(17), 5662–5670 (2015)

    Article  Google Scholar 

  5. 5.

    A. Arman, Ş. Ţălu, C. Luna, A. Ahmadpouran, M. Naseri, M. Molamohamadi, J. Mater. Sci. Mater. Electron. 26, 9630 (2015)

    Article  Google Scholar 

  6. 6.

    S. Kulesza, M. Bramowicz, Appl. Surf. Sci. 293, 196 (2014)

    Article  Google Scholar 

  7. 7.

    S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Mater. Sci. Pol. 33(1), 175 (2015)

    Google Scholar 

  8. 8.

    A. Arman, T. Ghodselahi, M. Molamohammadi, S. Solaymani, H. Zahrabi, A. Ahmadpourian, Prot. Metals Phys. Chem. Surf. 51(4), 575 (2015)

    Article  Google Scholar 

  9. 9.

    A. Méndez, Y. Reyes, G. Trejo, K. Stępień, Ş. Ţălu, Microsc. Res. Tech. 78(12), 1082 (2015)

    Article  Google Scholar 

  10. 10.

    S. Ramazanov, Ş. Ţălu, D. Sobola, S. Stach, G. Ramazanov, Superlattices Microstruct. 86, 395 (2015)

    Article  Google Scholar 

  11. 11.

    M. Bramowicz, S. Kulesza, T. Lipiński, P. Szabracki, P. Piątkowski, Solid State Phenom. 203–204, 86 (2013)

    Article  Google Scholar 

  12. 12.

    Ş. Ţălu, Basics and Applications (Napoca Star Publishing House, Cluj-Napoca, 2015)

    Google Scholar 

  13. 13.

    Ş. Ţălu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, Mater. Sci. Pol. 33(1), 137–143 (2015)

    Google Scholar 

  14. 14.

    P. Patsalas, S. Logothetidis, J. Appl. Phys. 90(9), 4725–4734 (2001)

    Article  Google Scholar 

  15. 15.

    N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, J. Mater. Sci. Mater. Electron. 27, 2800 (2016)

    Article  Google Scholar 

  16. 16.

    A. Gelali, A. Ahmadpourian, R. Bavadi, M.R. Hantehzadeh, A. Ahmadpourian, J. Fusion Energy 31, 586 (2012)

    Article  Google Scholar 

  17. 17.

    P. Patsalas, C. Charitidis, S. Logothetidis, C.A. Dimitriadis, O. Valassiades, J. Appl. Phys. 86(9), 5296–5298 (1999)

    Article  Google Scholar 

  18. 18.

    M.O. Thotiyl, T.R. Kumar, S. Sampath, J. Phys. Chem. C 114(41), 17934–17941 (2010)

    Article  Google Scholar 

  19. 19.

    N. Kumar, J.T. McGinn, K. Pourrezaei, B. Lee, E.C. Douglas, J. Vac. Sci. Technol. A 6(3), 1602–1608 (1988)

    Article  Google Scholar 

  20. 20.

    Ş. Ţălu, C. Luna, A. Ahmadpourian et al., J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5268-9

    Google Scholar 

  21. 21.

    Ş. Ţălu, S. Stach, S.H. Solaymani, R. Moradian, A. Ghaderi, M.R. Hantehzadeh, S.M. Elahi, Ż. Garczyk, S. Izadyar, J. Electroanal. Chem. 749, 31 (2015)

    Article  Google Scholar 

  22. 22.

    R.P. Yadav, S. Dwivedi, A.K. Mittal, M. Kumar, A.C. Pandey, Appl. Surf. Sci. 261, 547–553 (2012)

    Article  Google Scholar 

  23. 23.

    Ş. Ţălu, S. Stach, A. Mahajan, D. Pathak, T. Wagner, A. Kumar, R.K. Bedi, Surf. Interface Anal. 46(6), 393–398 (2014)

    Article  Google Scholar 

  24. 24.

    Y. Wang, K.W. Xu, Thin Solid Films 468, 310–315 (2004)

    Article  Google Scholar 

  25. 25.

    Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, A. Ghaderi, F. Mashayekhi, S. Solaymani, Ind. Eng. Chem. Res. 54, 8212 (2015)

    Article  Google Scholar 

  26. 26.

    Ş. Ţălu, S. Stach, D. Raoufi, F. Hosseinpanahi, Electron. Mater. Lett. 11(5), 749–757 (2015)

    Article  Google Scholar 

  27. 27.

    Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Shafikhani, A. Ghaderi, M. Ahmadirad, J. Ind. Eng. Chem. 35, 158 (2016)

    Article  Google Scholar 

  28. 28.

    ISO 25178-2:(2012), Geometrical product specification (GPS)—Surface texture: areal—part 2: terms, definitions and surface texture parameters. https://www.iso.org/obp/ui/#iso:std:iso:25178:-2:ed-1:v1:en. Accessed 28 March 2015

  29. 29.

    J.E. Sundgren, Thin Solid Films 128(1–2), 21–44 (1985)

    Article  Google Scholar 

  30. 30.

    MountainsMap® 7 Software. (Digital Surf, Besançon, France), http://www.digitalsurf.com/en/mntkey.html. Accessed 27 Aug 2015

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Azin Ahmadpourian or Ali Arman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stach, S., Sapota, W., Ţălu, Ş. et al. 3-D surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures. J Mater Sci: Mater Electron 28, 2113–2122 (2017). https://doi.org/10.1007/s10854-016-5774-9

Download citation

Keywords

  • Substrate Temperature
  • Titanium Nitride
  • Reactive Magnetron
  • Wear Resistant Coating
  • Motif Point