Skip to main content

Advertisement

Log in

Synthesis, photoluminescence features with intramolecular energy transfer and Judd–Ofelt analysis of highly efficient europium(III) complexes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The luminescent binary and ternary europium(III) complexes were prepared by employing ethyl-(3-fluorobenzoyl) acetate (m-EFBA) as primary ligand and neocuproine (neo), bathophenanthroline (batho), 1,10-phenanthroline (phen) and 2,2-bipyridyl (bipy) as secondary ligands. The synthesized complexes Eu(m-EFBA)3·(H2O)2 (C1), Eu(m-EFBA)3·neo (C2), Eu(m-EFBA)3·batho (C3), Eu(m-EFBA)3·phen (C4), Eu(m-EFBA)3·bipy (C5) were characterized by the means of elemental analysis (C, H and N), nuclear magnetic resonance spectroscopy (1H-NMR), infrared spectroscopy (IR), thermogravimetric analysis (TG/DTG), UV–visible and photoluminescence (PL) spectroscopy. The photoluminescence spectra of complexes exhibit the characteristic emission band at 613 nm assigned to hypersensitive 5D0 → 7F2 transition, responsible for the red color emission of complexes. The higher photoluminescence intensity of ternary europium(III) complexes C2–C5 as compared to binary complex C1, suggest that ancillary ligands neo, batho, phen and bipy enhance the process of sensitization from ligand (m-EFBA) to europium(III) ion. The luminescence decay time and quantum efficiencies of the complexes were determined to estimate the efficiency of energy transfer from ligand to metal ion. In addition, the Judd–Ofelt intensity parameters (Ω2, Ω4) were calculated from the emission intensities of 5D0 → 7F2 and 5D0 → 7F4 transitions of europium(III) ion respectively. The intramolecular energy transfer mechanism of the complexes were also investigated and results indicate that the ligand (m-EFBA) and ancillary ligands effectively transfer the energy to that of Eu(III) ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.I. Weissman, J. Chem. Phys. 10, 214 (1942)

    Article  Google Scholar 

  2. L.R. Melby, N.J. Rose, E. Abramson, J.C. Caris, J. Am. Chem. Soc. 86, 5117 (1964)

    Article  Google Scholar 

  3. K. Binnemans, P. Lenaerts, K. Driesen, C. Görller-Walrand, J. Mater. Chem. 14, 191 (2004)

    Article  Google Scholar 

  4. J.C. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048 (2005)

    Article  Google Scholar 

  5. G. Muller, Dalton Trans. 44, 9692 (2009)

    Article  Google Scholar 

  6. S.V. Elisseva, J.C. Bünzli, Chem. Soc. Rev. 39, 189 (2010)

    Article  Google Scholar 

  7. J.Q. Liu, Y.Y. Wang, S.R. Batten, H. Sakiyama, D.Y. Ma, Inorg. Chem. Commun. 19, 27 (2012)

    Article  Google Scholar 

  8. X. Zhu, H.Y. Zheng, X.F. Wei, Z.Y. Lin, L.H. Guo, B. Qiu, G.N. Chen, Chem. Commun. 13, 1276 (2013)

    Article  Google Scholar 

  9. L.X. Shi, C.D. Wu, Chem. Commun. 10, 2928 (2011)

    Article  Google Scholar 

  10. Y.G. Lee, H.R. Moon, Y.E. Cheon, M.P. Suh, Angew. Chem. Int. Ed. 40, 7741 (2008)

    Article  Google Scholar 

  11. T. Nitabaru, A. Nojiri, M. Kobayashi, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 131, 13860 (2009)

    Article  Google Scholar 

  12. J.R. Morrow, Comments Inorg. Chem. 29, 169 (2008)

    Article  Google Scholar 

  13. E.R. Farquhar, J.P. Richard, J.R. Morrow, Analog Inorg. Chem. 46, 7169 (2007)

    Article  Google Scholar 

  14. V. Bekiari, P. Lianos, Adv. Mater. 10, 1455 (1998)

    Article  Google Scholar 

  15. B. Gao, Z. Qiao, T. Chen, Mater. Chem. Phys. 143, 1119 (2014)

    Article  Google Scholar 

  16. K. Binnemans, Chem. Rev. 109, 4283 (2009)

    Article  Google Scholar 

  17. A.P. Souza, F.A.A. Paz, R.O. Freire, L.D. Carlos, O.L. Malta, S. Alves Jr., G.F. de Sà, J. Phys. Chem. B 111, 9228 (2007)

    Article  Google Scholar 

  18. I.R. Lasker, T.M. Chen, Chem. Mater. 16, 111 (2004)

    Article  Google Scholar 

  19. Z. Bao, A.J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998)

    Article  Google Scholar 

  20. C. Yang, L.M. Fu, Y. Wang, J.P. Zhang, W.T. Wong, X.C. Ai, Y.F. Qiao, B.S. Zou, L.L. Gui, Angew. Chem. Int. Ed. 43, 5010 (2004)

    Article  Google Scholar 

  21. A. Dossing, Eur. J. Inorg. Chem. 2005, 1425 (2005)

    Article  Google Scholar 

  22. M. Bala, S. Kumar, V.B. Taxak, P. Boora, S.P. Khatkar, J. Fluorine Chem. 178, 6 (2015)

    Article  Google Scholar 

  23. E.J. Roh, J.M. Keller, Z. Olah, M.J. Ladarola, K.A. Jacobson, Bioorg. Med. Chem. 16, 9349 (2008)

    Article  Google Scholar 

  24. D. Wang, C. Zheng, L. Fan, J. Zheng, X. Wei, Synth. Met. 162, 2063 (2012)

    Article  Google Scholar 

  25. W. Zhang, C.H. Liu, R.R. Tang, C.Q. Tang, Bull. Korean Chem. Soc. 30, 2213 (2009)

    Article  Google Scholar 

  26. M. Arvind, K. Sageed, Indian J. Chem. 25A, 589 (1986)

    Google Scholar 

  27. L. Fu, R.A.S. Ferreira, N.J.O. Silva, A.J. Fernandes, P. Ribeiro-Claro, S. Goncalves, V.D.Z. Bermudez, L.D. Carlos, J. Mater. Chem. 15, 3117 (2005)

    Article  Google Scholar 

  28. Y. Zhang, H. Shi, Y. Ke, Y. Cao, J. Lumin. 124, 51 (2007)

    Article  Google Scholar 

  29. D. Wang, C. Zheng, L. Fan, Y. Hu, J. Zheng, Spectrochim. Acta Mol. Biomol. Spectrosc. 117, 245 (2014)

    Article  Google Scholar 

  30. M. Bala, S. Kumar, P. Boora, V.B. Taxak, A. Khatkar, S.P. Khatkar, J. Mater. Sci.: Mater. Electron. 25, 2850 (2014)

    Google Scholar 

  31. G. Shao, Y. Li, K. Feng, F. Gan, M. Gong, Sens. Actuators B 173, 692 (2012)

    Article  Google Scholar 

  32. J. Kai, D.F. Parra, H.F. Brito, J. Mater. Chem. 18, 4549 (2008)

    Article  Google Scholar 

  33. A.F. Kirby, D. Foster, F.S. Richardson, Chem. Phys. Lett. 95, 507 (1983)

    Article  Google Scholar 

  34. F.S. Richardson, Chem. Rev. 82, 541 (1982)

    Article  Google Scholar 

  35. R. Ilmi, K. Iftikar, Polyhedron 102, 16 (2015)

    Article  Google Scholar 

  36. H. Wang, P. He, H. Yan, M. Gong, Sens. Actuators B 156, 6 (2011)

    Article  Google Scholar 

  37. N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123, 201 (1993)

    Article  Google Scholar 

  38. H.F. Brito, O.L. Malta, L.R. Souza, J.F.S. Menezes, C.A.A. Carvalho, J. Non-Cryst, Solids 247, 129 (1999)

    Google Scholar 

  39. D.B.A. Raj, S. Biju, M.L.P. Reddy, Inorg. Chem. 47, 8091 (2008)

    Article  Google Scholar 

  40. M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542 (2002)

    Article  Google Scholar 

  41. S. Stanimirov, I. Petkov, Spectrochim. Acta Mol. Biomol. Spectrosc. 72, 1127 (2009)

    Article  Google Scholar 

  42. L.D. Carlos, Y. Messaddeq, H.F. Brito, R.A.S. Ferreira, V.D. Bermudez, S.J.L. Ribeiro, Adv. Mater. 12, 594 (2000)

    Article  Google Scholar 

  43. R. Ferreira, P. Pires, B.D. Castro, R.A.S. Ferreira, L.D. Carlos, U. Pischel, N. J. Chem. 28, 1506 (2004)

    Article  Google Scholar 

  44. G.F. de Sà, O.L. Malta, C. de Mello Donegà, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. da Silva Jr., Coord. Chem. Rev. 196, 165 (2000)

    Article  Google Scholar 

  45. M.C.F.C. Felinto, C.S. Tomiyama, H.F. Brito, E.E.S. Teotonio, O.L. Malta, J. Solid State Chem. 171, 189 (2003)

    Article  Google Scholar 

  46. E.E.S. Teotonio, H.F. Brito, M.C.F.C. Felinto, C.A. Kodaira, O.L. Malta, J. Coord. Chem. 56, 913 (2003)

    Article  Google Scholar 

  47. F. Cagnin, M.R. Davolos, E.E. Castellano, Polyhedron 67, 65 (2014)

    Article  Google Scholar 

  48. P. Gawryszewska, J. Sokolnicki, J. Legendziewicz, Coord. Chem. Rev. 249, 2489 (2005)

    Article  Google Scholar 

  49. M. Latva, H. Takalo, V.M. Mukkala, C. Matachescu, J.C.R. Ubis, J. Kankare, J. Lumin. 75, 149 (1997)

    Article  Google Scholar 

  50. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  Google Scholar 

  51. C.R.S. Dean, T.M. Shephred, J. Chem. Soc. Faraday Trans. 2(71), 146 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported in the form of senior research fellowship (SRF) from UGC, New Delhi, India (Award No: 2121210101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Boora.

Ethics declarations

Conflict of interest

The authors indicated no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, R., Dalal, M., Bala, M. et al. Synthesis, photoluminescence features with intramolecular energy transfer and Judd–Ofelt analysis of highly efficient europium(III) complexes. J Mater Sci: Mater Electron 27, 12506–12516 (2016). https://doi.org/10.1007/s10854-016-5760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5760-2

Keywords

Navigation