Skip to main content
Log in

Facile and surfactant-free hydrothermal synthesis of PbS nanoparticles: the role of hydrothermal reaction time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PbS nanoparticles having the suitability for power semiconductor devices, were synthesized by facile, effective, and surfactant-free hydrothermal method. The effect of reaction time on the morphology, microstructure and optical properties of PbS nanoparticles was investigated. The methods of XRD, TEM, HRTEM, EDX, FTIR and UV–VIS photometry measurements were used for PbS nanoparticles characterization. The reaction time was found to have an effective role in controlling the morphology, crystallinity, crystallite size, microstrain and optical band gap of the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Baláž, P. Pourghahramani, E. Dutková, M. Fabián, J. Kováč, A. Šatka, Cent. Eur. J. Chem. 7(2), 215–221 (2009)

    Google Scholar 

  2. M.S. Niasari, A. Sobhani, S. Khoshrooz, N. Mirzanasiri, J. Clust. Sci. 25, 937–947 (2014)

    Article  Google Scholar 

  3. D.J. Asunskis, I.L. Bolotin, L. Hanley, J. Phys. Chem. C 112, 9555–9558 (2008)

    Article  Google Scholar 

  4. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354–357 (1994)

    Article  Google Scholar 

  5. R.S. Kane, R.E. Cohen, R. Silbey, J. Phys. Chem. B 100(19), 7928–7932 (1996)

    Article  Google Scholar 

  6. P.K. Nair, O. Gomezdaza, M.T.S. Nair, Adv. Mater. Opt. Electron. 1, 139–145 (1992)

    Article  Google Scholar 

  7. P. Gadenne, Y. Yagil, G. Deutscher, J. Appl. Phys. 66, 3019–3025 (1989)

    Article  Google Scholar 

  8. H. Hirata, K. Higashiyama, Bull. Chem. Soc. Jpn 44, 2420 (1971)

    Article  Google Scholar 

  9. M. Nam, J. Park, S.-W. Kim, K. Lee, J. Mater. Chem. A 2, 3978–3985 (2014)

    Article  Google Scholar 

  10. H. Emadi, M.S. Niasari, Superlattices Microstruct. 54, 118–127 (2013)

    Article  Google Scholar 

  11. M.N. Nadagouda, R.S. Varma, Cryst. Growth Des. 8(1), 291–295 (2008)

    Article  Google Scholar 

  12. F. Li, Q. Qin, J. Wu, Z. Li, J. Mater. Sci. 45, 348–353 (2010)

    Article  Google Scholar 

  13. V.F. Skums, R.L. Pink, M.R. Allazov, Inorg. Mater. 27, 1336 (1991). (English Translation)

    Google Scholar 

  14. F. Davar, M. Mohammadikish, M.R. Estarki, M.M. Farahani, Ceram. Int. 40, 8143–8148 (2014)

    Article  Google Scholar 

  15. S.K. Yadav, P. Jeevanandam, Opt. Mater. 46, 209–215 (2015)

    Article  Google Scholar 

  16. S.M. Lee, S.N. Cho, J. Cheon, Adv. Mater. 15(5), 441–444 (2003)

    Article  Google Scholar 

  17. P. Scherrer, Göttinger Nachrichten Gesell, vol. 2 (1918), p. 98

  18. J. Markmann, V. Yamakov, J. Weissemüller, Scr. Mater. 59(1), 15–18 (2008)

    Article  Google Scholar 

  19. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  20. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc., New Jersey, 1971)

    Google Scholar 

  21. I.J. Kramer, E.H. Sargent, Chem. Rev. 114, 863–882 (2014)

    Article  Google Scholar 

  22. I. Kang, F.W. Wise, J. Opt. Soc. Am. B 14(7), 1632 (1997)

    Article  Google Scholar 

  23. R. Thielsch, T. Biihme, R. Reiche, D. Schlafer, H.-D. Baues, H. Bottcher, Nanostruct. Mater. 10(2), 131–149 (1998)

    Article  Google Scholar 

  24. I. Chakraborty, S.P. Moulik, J. Nanopart. Res. 6, 233–240 (2004)

    Article  Google Scholar 

  25. J. Liu, H. Yu, Z. Wu, W. Wang, J. Peng, Y. Cao, Nanotechnology 19, 345602 (2008)

    Article  Google Scholar 

  26. A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, A. Etcheberry, M. Mostafavi, J. Phys. Chem. C 113, 8050–8057 (2009)

    Article  Google Scholar 

  27. A.K. Bhunia, T. Kamilya, S. Saha, J. Phys. Sci. 20, 221–224 (2015)

    Google Scholar 

  28. R.S.S. Saravanan, M. Meena, D. Pukazhselvan, C.K. Mahadevan, J. Alloys Compd. 627, 69–77 (2015)

    Article  Google Scholar 

  29. F. Göde, E. Güneri, F.M. Emen, V.E. Kafadar, S. Ünlü, J. Lumin. 147, 41–48 (2014)

    Article  Google Scholar 

  30. B. Yu, Y. Gu, Y. Mao, C. Zhu, F. Gan, J. Nonlinear Opt. Phys. Mater. 9(1), 117 (2000)

    Article  Google Scholar 

  31. L.E. Brus, J. Chem. Phys. 72, 1514 (1984)

    Google Scholar 

  32. L.E. Brus, J. Chem. Phys. 90, 2555 (1986)

    Article  Google Scholar 

  33. S.J.O. Hardman, D.M. Graham, S.K. Stubbs, B.F. Spencer, E.A. Seddon, H.-T. Fung, S. Gardonio, F. Sirotti, M.G. Silly, J. Akhtar, P. O’Brien, D.J. Binks, W.R. Flavell, Phys. Chem. Chem. Phys. 13, 20275 (2011)

    Article  Google Scholar 

  34. B. Carlson, K. Leschkies, E.S. Aydil, X.Y. Zhu, J. Phys. Chem. C 112, 8419–8423 (2008)

    Article  Google Scholar 

  35. A. Phuruangrat, T. Thongtem, B. Kuntalue, S. Thongtem, Mater. Lett. 81, 55–58 (2012)

    Article  Google Scholar 

  36. G. Nabiyouni, P. Boroojerdian, K. Hedayati, D. Ghanbari, High Temp. Mater. Process. 31, 723–725 (2012)

    Article  Google Scholar 

  37. D. Wanga, D. Yua, M. Moa, X. Liub, Y. Qian, Solid State Commun. 125, 475–479 (2003)

    Article  Google Scholar 

  38. Y. Jianga, Y. Wua, B. Xiea, Sh Yuana, X. Liub, Y. Qian, J. Cryst. Growth 231, 248–251 (2001)

    Article  Google Scholar 

  39. M.S. Niasari, D. Ghanbari, Particuology 10, 628–633 (2012)

    Article  Google Scholar 

  40. Sh Chena, W. Liu, Mater. Chem. Phys. 98, 183–189 (2006)

    Article  Google Scholar 

  41. M.S. Niasari, D. Ghanbari, M.R.L. Estarki, Polyhedron 35, 149–153 (2012)

    Article  Google Scholar 

  42. M.S. Niasari, A. Sobhani, F. Davara, J. Alloys Compd. 507, 77–83 (2010)

    Article  Google Scholar 

  43. Y. Ji, X. Ma, H. Zhang, J. Xu, D. Yang, J. Phys.: Condens. Matter 15, 7611–7615 (2003)

    Google Scholar 

  44. Y. Ni, X. Wei, J. Hong, X. Ma, Cryst. Res. Technol. 41, 885–888 (2006)

    Article  Google Scholar 

  45. A.A. Ebnalwaled, A.A. Abd El-Raady, A.M. Abo-Bakr, Chalcogenide Lett. 10(2), 55–62 (2013)

    Google Scholar 

  46. B.J. Baliga, IEEE Trans. Electron. Devices 43(10), 1717 (1996)

    Article  Google Scholar 

  47. B. Jayant Baliga, Fundamentals of Power Semiconductor Devices (Springer, 2008). doi:10.1007/978-0-387-47314-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ebnalwaled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebnalwaled, A.A., Essai, M.H., Hasaneen, B.M. et al. Facile and surfactant-free hydrothermal synthesis of PbS nanoparticles: the role of hydrothermal reaction time. J Mater Sci: Mater Electron 28, 1958–1965 (2017). https://doi.org/10.1007/s10854-016-5749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5749-x

Keywords

Navigation