Skip to main content
Log in

Preparation of MoO2 nanoparticles/rGO nanocomposites and their high electrochemical properties for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MoO2 nanoparticles (NPs) and reduced graphene oxide (rGO) nanocomposites (MoO2 NPs/rGO) with different rGO contents were prepared by a two-step hydrothermal process. When the content of rGO was 10 wt%, the MoO2 nanoparticles were uniformly deposited on the rGO nanosheets, and the corresponding MoO2 NPs/rGO nanocomposites also exhibited the highest reversible capacities of 1647 mAh g−1 at the first cycle and 1269 mAh g−1 after 100 cycles. This material also had stable rate capacity for 991 mAh g−1 at 1 mA cm−2. The outstanding electrochemical performance of the nanocomposite may be attributed to the synergistic interaction between MoO2 NPs and rGO, as there were enough void spaces to buffer volume change in the microstructures of the MoO2 NPs/rGO nanocomposites. Furthermore, rGO nanosheets in the MoO2 NPs/rGO nanocomposites could act as not only active materials but also electronic conductive channels to improve the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Luo, S. Liu, L. Zhi, Small 8, 630 (2012)

    Article  Google Scholar 

  2. D. Liu, G. Cao, Energy Environ. Sci. 3, 1218 (2010)

    Article  Google Scholar 

  3. W. Zhang, Y. Zeng, N. Xiao, H.H. Hng, Q. Yan, J. Mater. Chem. 22, 8455 (2012)

    Article  Google Scholar 

  4. Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Adv. Funct. Mater. 23, 2436 (2013)

    Article  Google Scholar 

  5. Q. Eliana, D. Valentina, R. Alessandro, T. Cristina, T. Tamburini, U. Piercarlo, J. Power Sources 320, 314 (2016)

    Article  Google Scholar 

  6. Y.J. Mai, X.H. Xia, R. Chen, C.D. Gu, X.L. Wang, J.P. Tu, Electrochim. Acta 67, 73 (2012)

    Article  Google Scholar 

  7. H. Liu, G. Wang, J. Liu, S. Qiao, H. Ahn, J. Mater. Chem. 21, 3046 (2011)

    Article  Google Scholar 

  8. D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang, G. Du, Electrochim. Acta 92, 87 (2013)

    Article  Google Scholar 

  9. Y. Sun, X. Hu, W. Luo, Y. Huang, J. Mater. Chem. 22, 13826 (2012)

    Article  Google Scholar 

  10. H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, D. Golberg, Chem. Commun. 48, 4878 (2012)

    Article  Google Scholar 

  11. C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong, J.Z. Jiang, J. Phys. Chem. C 116, 4000 (2012)

    Article  Google Scholar 

  12. Z. Wang, D. Luan, F.Y. Boey, X.W. Lou, J. Am. Chem. Soc. 133, 4738 (2011)

    Article  Google Scholar 

  13. J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Angew. Chem. Int. Ed. 52, 6417 (2013)

    Article  Google Scholar 

  14. J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Nano Lett. 13, 6136 (2013)

    Article  Google Scholar 

  15. Y. Liu, H. Zhang, P. Ouyang, Z. Li, Electrochim. Acta 102, 429 (2013)

    Article  Google Scholar 

  16. J. Liu, Z. Zhang, C. Pan, Y. Zhao, X. Su, Y. Zhou, D. Yu, Mater. Lett. 58, 3812 (2004)

    Article  Google Scholar 

  17. L.C. Yang, Q.S. Gao, Y.H. Zhang, Y. Tang, Y.P. Wu, Electrochem. Commun. 10, 118 (2008)

    Article  Google Scholar 

  18. Y. Lei, J. Hu, H. Liu, J. Li, Mater. Lett. 68, 82 (2012)

    Article  Google Scholar 

  19. Y. Shi, B. Guo, A.C. Serena, Q. Shi, Y.S. Hu, K.R. Heier, L. Chen, R. Seshadri, G.D. Stucky, Nano Lett. 9, 4215 (2009)

    Article  Google Scholar 

  20. F. Gao, L. Zhang, S. Huang, Mater. Lett. 64, 537 (2010)

    Article  Google Scholar 

  21. W. Cho, J.H. Song, J.H. Kim, G. Jeong, E.Y. Lee, Y.J. Kim, J. Appl. Electrochem. 42, 909 (2012)

    Article  Google Scholar 

  22. B.M. Goh, Y. Wang, M.V. Reddy, Y.L. Ding, L. Lu, C. Bunker, K.P. Loh, A.C.S. Appl, Mater. Interfaces 6, 9835 (2014)

    Article  Google Scholar 

  23. Y. Chen, J. Zhu, B. Qu, B. Lu, Z. Xu, Nano Energy 3, 88 (2014)

    Article  Google Scholar 

  24. M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang, S. Guan, A.C.S. Appl, Mater. Interfaces 5, 3449 (2013)

    Article  Google Scholar 

  25. Y. Yao, C. Xu, S. Yu, D. Zhang, S. Wang, Ind. Eng. Chem. Res. 52, 3637–3645 (2013)

    Google Scholar 

  26. Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, ACS Nano 4, 3187 (2010)

    Article  Google Scholar 

  27. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater Sci. 56, 1178 (2011)

    Article  Google Scholar 

  28. H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, M. Cao, J. Mater. Chem. 22, 21679 (2012)

    Article  Google Scholar 

  29. Y. Chen, Q. Wang, C. Zhu, P. Gao, Q. Ouyang, T. Wang, Y. Ma, C. Sun, J. Mater. Chem. 22, 5924 (2012)

    Article  Google Scholar 

  30. X. Zheng, G. Shen, Y. Li, H. Duan, X. Yang, S. Huang, H. Wang, C. Wang, Z. Deng, B.L. Su, J. Mater. Chem. A 1, 1394 (2013)

    Article  Google Scholar 

  31. Y. Sun, X. Hu, W. Luo, Y. Huang, J. Mater. Chem. 22, 425 (2012)

    Article  Google Scholar 

  32. M. Dieterle, G. Weinberg, G. Mestl, Phys. Chem. Chem. Phys. 4, 812 (2002)

    Article  Google Scholar 

  33. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  34. W. Shu, Y. Liu, Z. Peng, K. Chen, C. Zhang, W.J. Chen, J. Alloys Compd. 563, 229 (2013)

    Article  Google Scholar 

  35. G.N. Cristina, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499 (2007)

    Article  Google Scholar 

  36. Y.J. Mai, D. Zhang, Y.Q. Qiao, C.D. Gu, X.L. Wang, J.P. Tu, J. Power Sources 216, 201 (2012)

    Article  Google Scholar 

  37. Q. Tang, Z. Shan, L. Wang, X. Qin, Electrochim. Acta 79, 148 (2012)

    Article  Google Scholar 

  38. U.Č. Lačnjevac, B.M. Jović, L.M. Gajić-Krstajić, J. Kovač, V.D. Jović, N.V. Krstajić, Electrochim. Acta 96, 34 (2013)

    Article  Google Scholar 

  39. H. Zhang, L. Zeng, X. Wu, L. Lian, M. Wei, J. Alloys Compd. 580, 358 (2013)

    Article  Google Scholar 

  40. Q. Feng, X. Li, J. Wang, A.M. Gaskov, Sens. Actuators B: Chem. 222, 864 (2016)

    Article  Google Scholar 

  41. D. Yang, X. Wang, J. Shi, X. Wang, S. Zhang, P. Han, Z. Jiang, Biochem. Eng. J. 105, 273 (2016)

    Article  Google Scholar 

  42. F. Xia, X. Hu, Y. Sun, W. Luo, Y. Huang, Nanoscale 4, 4707 (2012)

    Article  Google Scholar 

  43. Z. Xu, H. Wang, Z. Li, A. Kohandehghan, J. Ding, J. Chen, K. Cui, D. Mitlin, J. Phys. Chem. C 118, 18387 (2014)

    Article  Google Scholar 

  44. V.V. Anton, J. Bhattacharya, A.A. Belak, Acc. Chem. Res. 46, 1216 (2012)

    Google Scholar 

  45. L. Yang, L. Liu, Y. Zhu, X. Wang, Y. Wu, J. Mater. Chem. 22, 13148 (2012)

    Article  Google Scholar 

  46. T. Masaya, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ion. 148, 283 (2002)

    Article  Google Scholar 

  47. K. Chang, W. Chen, ACS Nano 5, 4720 (2011)

    Article  Google Scholar 

  48. B. Guo, X. Fang, B. Li, Y. Shi, C. Ouyang, Y. Hu, Z. Wang, G.D. Stucky, L. Chen, Chem. Mater. 24, 457 (2012)

    Article  Google Scholar 

  49. A.Y. Shenouda, H.K. Liu, J. Alloys Compd. 477, 498 (2009)

    Article  Google Scholar 

  50. J. Palomino, D. Varshney, B.R. Weiner, G. Morell, J. Phys. Chem. C 119, 21125 (2015)

    Article  Google Scholar 

  51. J. Zhang, Y. Liang, Q. Zhou, Y. Peng, H. Yang, J. Power Sources 290, 71 (2015)

    Article  Google Scholar 

  52. J. Woo, S.H. Baek, J.S. Park, Y.M. Jeong, J.H. Kim, J. Power Sources 299, 25 (2015)

    Article  Google Scholar 

  53. T.F. Yi, S.Y. Yang, Y.R. Zhu, Y. Xie, R.S. Zhu, Int. J. Hydrogen Energy 40, 8571 (2015)

    Article  Google Scholar 

  54. B. Jin, E.M. Jin, K.H. Park, H.B. Gu, Electrochem. Commun. 10, 1537 (2008)

    Article  Google Scholar 

  55. H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Electrochem. Commun. 8, 1553 (2006)

    Article  Google Scholar 

  56. S.M. Paek, E.J. Yoo, I. Honma, Nano Lett. 9, 72 (2009)

    Article  Google Scholar 

  57. H. Liu, J. Du, Solid State Sci. 8, 526 (2006)

    Article  Google Scholar 

  58. L. Fei, Q. Lin, B. Yuan, G. Chen, P. Xie, Y. Li, Y. Xu, S. Deng, S. Smirnov, H. Luo, A.C.S. Appl, Mater. Interfaces 5, 5330 (2013)

    Article  Google Scholar 

  59. E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008)

    Article  Google Scholar 

  60. H. Wang, L.F. Cui, Y. Yang, C.H. Sanchez, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, J. Am. Chem. Soc. 132, 13978 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the International S&T Cooperation Program of China (ISTCP) (2013DFR50710), National Nature Science Foundation of China (51202174), Natural Science Foundation of Hubei Province, China (2015CFB251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyuan Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, W., Liu, Y. et al. Preparation of MoO2 nanoparticles/rGO nanocomposites and their high electrochemical properties for lithium ion batteries. J Mater Sci: Mater Electron 28, 1740–1749 (2017). https://doi.org/10.1007/s10854-016-5720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5720-x

Keywords

Navigation