Optical and electrical properties of synthesized reactive rf sputter deposited boron-rich and boron-doped diamond-like carbon thin films

Abstract

Boron-doped diamond-like carbon (B-DLC) and boron-rich DLC thin films have been deposited on n-type silicon and quartz substrates by reactive rf magnetron sputtering process. Boron carbide (B4C) target was used in the deposition. Reducing the boron/carbon ratio was achieved by either using hydrogen gas or by introducing a proper flow rate of methane. Another approach of producing B-DLC thin films was achieved by using low methane\argon ratio (5/40) while sputtering atoms from non-saturated target-surface under various sputtering rf powers. The maximum film graphitization and lowest band gap energy was achieved by applying 100 W power. The Auger electron spectroscopy and Raman shifts were used to investigate the composition of the films. The optical properties were investigated using spectroscopic ellipsometry and spectrophotometer. Furthermore, p-type B-DLC/n-type Si(100) heterojunction diode was fabricated and the IV characteristics were investigated against the flow rates of methane or the rf power.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    X.-M. He, K.C. Walter, M. Nastasi, J. Phys.: Condens. Matter 12(8), L183 (2000)

    Google Scholar 

  2. 2.

    B. Khadro, A. Sikora, A.S. Loir, A. Errachid, F. Garrelie, C. Donnet, N. Jaffrezic-Renault, Sens. Actuators B Chem. 155(1), 120 (2011)

    Article  Google Scholar 

  3. 3.

    T. Kondo, H. Ito, K. Kusakabe, K. Ohkawa, Y. Einaga, A. Fujishima, T. Kawai, Electrochim. Acta 52(11), 3841 (2007)

    Article  Google Scholar 

  4. 4.

    C.H. Lee, K.S. Lim, Appl. Phys. Lett. 75(4), 569 (1999)

    Article  Google Scholar 

  5. 5.

    K.S. Lim, (1998)

  6. 6.

    Z.Q. Ma, B.X. Liu, Solar Energy Mater. solar cells 69(4), 339 (2001)

    Article  Google Scholar 

  7. 7.

    C. Ronning, U. Griesmeier, M. Gross, H.C. Hofsäss, R.G. Downing, G.P. Lamaze, Diam. Relat. Mater. 4(5), 666–672 (1995)

    Article  Google Scholar 

  8. 8.

    A. Sikora, A. Berkesse, O. Bourgeois, J.L. Garden, C. Guerret-Piecourt, A.S. Loir, F. Garrelie, C. Donnet, Appl. Phys. A 94(1), 105 (2009)

    Article  Google Scholar 

  9. 9.

    H. Zanin, P.W. May, D.J. Fermin, D. Plana, S.M.C. Vieira, W.I. Milne, E.J. Corat, ACS Appl. Mater. Interfaces 6(2), 990 (2014)

    Article  Google Scholar 

  10. 10.

    J.-C. Pu, S.-F. Wang, C.-L. Lin, J.C. Sung, Thin Solid Films 519(1), 521 (2010)

    Article  Google Scholar 

  11. 11.

    C.-F. Chen, S.-H. Chen, T.-M. Hong, Google Patents, 1997

  12. 12.

    C.-L. Tsai, C.-F. Chen, C.-L. Lin, J. Appl. Phys. 90(9), 4847 (2001)

    Article  Google Scholar 

  13. 13.

    A.A. Ahmad, Dissertaion Chemical and Materials Engineering (University of Nebraska, Lincoln, Interdisciplinary Program, 1996)

    Google Scholar 

  14. 14.

    M.M. Abdul-Gader, U.A. Al-Binni, A.A. Ahmad, M.A. Al-Basha, N.J. Ianno, Int. J. Electron. 88(8), 873 (2001)

    Article  Google Scholar 

  15. 15.

    A.A. Ahmad, N.J. Ianno, S.-D. Hwang, P.A. Dowben, Thin Solid Films 335(1), 174 (1998)

    Article  Google Scholar 

  16. 16.

    D.N. McIlroy, S.D. Hwang, K. Yang, N. Remmes, P.A. Dowben, A.A. Ahmad, N.J. Ianno, J.Z. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. A 67(3), 335 (1998)

    Article  Google Scholar 

  17. 17.

    S.-D. Hwang, K. Yang, P.A. Dowben, A.A. Ahmad, N.J. Ianno, J.Z. Li, J.Y. Lin, H.X. Jiang, D.N. McIlroy, Appl. Phys. Lett. 70, 1028 (1997)

    Article  Google Scholar 

  18. 18.

    T.-S. Chen, S.E. Chiou, S.T. Shiue, Thin Solid Films 528, 86 (2013)

    Article  Google Scholar 

  19. 19.

    M.W. Nydegger, G. Couderc, M.A. Langell, Appl. Surf. Sci. 147(1), 58 (1999)

    Article  Google Scholar 

  20. 20.

    S. Kouteva-Arguirova, W. Seifert, M. Kittler, J. Reif, Mater. Sci. Eng., B 102(1), 37 (2003)

    Article  Google Scholar 

  21. 21.

    A.A. Ahmad, N.J. Ianno, P.G. Snyder, D. Welipitiya, D. Byun, P.A. Dowben, J. Appl. Phys. 79(11), 8643 (1996)

    Article  Google Scholar 

  22. 22.

    K.E. Bennet, K.H. Lee, J.N. Kruchowski, S.-Y. Chang, M.P. Marsh, A.A. Van Orsow, A. Paez, F.S. Manciu, Materials 6(12), 5726 (2013)

    Article  Google Scholar 

  23. 23.

    S.A. Babanejad, R. Malekfar, S.M.R.S. Hosseini, Acta Phys. Polonica A 116(2), 217 (2009)

    Article  Google Scholar 

  24. 24.

    S. Prawer, R.J. Nemanich, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 362/1824 (2004) 2537

  25. 25.

    D.R. Tallant, T.A. Aselage, and D. Emin, in: T.A.A. D. Emin, C.L. Bekel (Ed.), Boro-rich Solids, 1990, p. 301

  26. 26.

    T.L. Aselage, D. Emin, G.A. Samara, D.R. Tallant, S.B. Van Deusen, M.O. Eatough, H.L. Tardy, E.L. Venturini, S.M. Johnson, Phys. Rev. B 48(16), 11759 (1993)

    Article  Google Scholar 

  27. 27.

    K. Shirai, S. Emura, J. Solid State Chem. 133(1), 93 (1997)

    Article  Google Scholar 

  28. 28.

    H. Werheit, T. Au, R. Schmechel, S.O. Shalamberidze, G.I. Kalandadze, A.M. Eristavi, J. Solid State Chem. 154(1), 79 (2000)

    Article  Google Scholar 

  29. 29.

    V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94(11), 3605 (2011)

    Article  Google Scholar 

  30. 30.

    C.F. Chen, C.L. Tsai, C.L. Lin, Diam. Relat. Mater. 12(9), 1500 (2003)

    Article  Google Scholar 

  31. 31.

    A.B. Kousaalya, R. Kumar, S. Packirisamy, J. Adv. Ceram. 2(4), 325 (2013)

    Article  Google Scholar 

  32. 32.

    G.E. Jellison, V.I. Merkulov, A.A. Puretzky, D.B. Geohegan, G. Eres, D.H. Lowndes, J.B. Caughman, Thin Solid Films 377, 68 (2000)

    Article  Google Scholar 

  33. 33.

    M. Sobaszek, R. Bogdanowicz, K. Siuzdak, A. Cirocka, P. ZiÄ, M. Gnyba, M. Naparty, P.A. otka, Opt. Mater. 42, 24 (2015)

    Article  Google Scholar 

  34. 34.

    J.A. Woollam, Wextech Systems Inc., 310 Madison Avenue, Suite 905, New York, NY 10017, 2010

  35. 35.

    H. Fujiwara, Spectroscopic ellipsometry: principles and applications (Wiley, Chichester, 2007)

    Book  Google Scholar 

  36. 36.

    N.M.B.R.M.A. Azzam (ed.), Ellipsometry and Polarized Light (North Holland, Amsterdam, 1988)

    Google Scholar 

  37. 37.

    R. Bogdanowicz, Metrol Meas Syst 21(4), 685 (2014)

    Article  Google Scholar 

  38. 38.

    A.A. Ahmad, A.M. Alsaad, B.A. Albiss, M.A. Al-Akhras, H.M. El-Nasser, I.A. Qattan, Phys. B Condens. Matter 470, 21 (2015)

    Article  Google Scholar 

  39. 39.

    A. Ahmad, S. Saqaan, B. Lahlouh, M. Hassan, A. Alsaad, H. El-Nasser, Phys. B: Condens. Matter 404(1), 1 (2009)

    Article  Google Scholar 

  40. 40.

    M. Vinnichenko, R. Gago, N. Huang, Y.X. Leng, H. Sun, U. Kreissig, M.P. Kulish, M.F. Maitz, Thin Solid Films 455, 530 (2004)

    Article  Google Scholar 

  41. 41.

    J. Lee, R.W. Collins, V.S. Veerasamy, J. Robertson, Diam. Relat. Mater. 7(7), 999 (1998)

    Article  Google Scholar 

  42. 42.

    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (b) 15(2), 627 (1966)

    Article  Google Scholar 

  43. 43.

    A. Usman, M.S. Rafique, S.F. Shaukat, S. Anjum, H. Latif, A. Sattar, Dig. J. Nanomater. Biostruct. 10(3), 915 (2015)

    Google Scholar 

  44. 44.

    S. Lee, J. Mazurowski, G. Ramseyer, P.A. Dowben, J. Appl. Phys. 72(10), 4925 (1992)

    Article  Google Scholar 

  45. 45.

    H.J. Ceragioli, A.C. Peterlevitz, J.C.R. Quispe, A. Larena, M.P. Pasquetto, M.A. Sampaio, V. Baranauskas, J. Phys: Conf. Ser. 100, 052029 (2008)

    Google Scholar 

  46. 46.

    S. Majdi, M. Kolahdouz, M. Moeen, K.K. Kovi, R.S. Balmer, H.H. Radamson, J. Isberg, Appl. Phys. Lett. 105(16), 163510 (2014)

    Article  Google Scholar 

  47. 47.

    S. Majdi, M. Gabrysch, R. Balmer, D. Twitchen, J. Isberg, J. Electron. Mater. 39(8), 1203 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Jordan University of Science and Technology in Jordan for the valuable support. Also great acknowledgment is extended to Prof. N.J. Ianno and J.A. Woollam at the Center for Microelectronics & Optical Materials Research (CMOMR), the University of Nebraska-Lincoln, NE, USA for the technical support and the personal advices.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Ahmad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A. Optical and electrical properties of synthesized reactive rf sputter deposited boron-rich and boron-doped diamond-like carbon thin films. J Mater Sci: Mater Electron 28, 1695–1705 (2017). https://doi.org/10.1007/s10854-016-5715-7

Download citation

Keywords

  • Boron Carbide
  • Flow Rate Ratio
  • Argon Flow Rate
  • Methane Flow Rate
  • Variable Angle Spectroscopic Ellipsometry