Skip to main content
Log in

Electrical conductivity and dielectric relaxation of cerium (IV) oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The complex dielectric permittivity and electrical conductivity for bulk cubic structure CeO2 (annealed at 1273 K for 10 h) are studied using capacitance (C) and the impedance Z(ω) measurements in a wide range of frequency (0.1 Hz–5 MHz) and at various temperatures (298–448 K). The measured dielectric permittivity and electrical conductivity data of CeO2 are analyzed using electric modulus formalism \( {\text{M}}^{*} \left( \omega \right) \), Nyquist plot, Jonscher’s universal power law, small polaron tunneling model and nearly constant loss model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Xue, K. Betzler, H. Hesse, Dielectric constants of binary rare-earth compounds. J. Phys. Condens. Matter 12, 3113–3118 (2000)

    Article  Google Scholar 

  2. A.A. Ansari, J. Labis, M. Alam, S.M. Ramay, N. Ahmad, A. Mahmood, Influence of copper ion doping on structural, optical and redox properties of CeO2 nanoparticles. J. Electroceram. 36, 150–157 (2016)

    Article  Google Scholar 

  3. J. Chen, S. Pati, S. Seal, J.F. McGinnis, Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142–150 (2006)

    Article  Google Scholar 

  4. J. Colon, L. Herrera, J. Smith, S. Patil, C. Komanski, P. Kupelian, S. Seal, D.W. Jenkins, C.H. Baker, Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed. Nanotechnol. Biol. Med. 5, 225–231 (2009)

    Article  Google Scholar 

  5. A.A. Ansari, P.R. Solanki, B.D. Malhotra, Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J. Biotechnol. 142, 179–184 (2009)

    Article  Google Scholar 

  6. A.A. Ansari, P.R. Solanki, B.D. Malhotra, Sol-gel derived nanostructured cerium oxide film for glucose sensor. Appl. Phys. Lett. 92, 263901 (2008)

    Article  Google Scholar 

  7. L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, Single CeO2 nanowire gas sensor supported with Pt nanocrystals: gas sensitivity, Surface bond states, and chemical mechanism. J. Phys. Chem. C 112, 9061–9065 (2008)

    Article  Google Scholar 

  8. H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. Angew. Chem. Int. Ed. 51, 12032–12035 (2012)

    Article  Google Scholar 

  9. S.K. Mahammadunnisa, P.M.K. Reddy, N. Lingaiah, C.H. Subrahmanyam, NiO/Ce1−xNixO2−δ as an alternative to noble metal catalysts for CO oxidation. Catal. Sci. Technol. 3, 730–736 (2013)

    Article  Google Scholar 

  10. S. Banerjee, P.S. Devi, D. Topwal, S. Mandal, K. Menon, Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium co-doping. Adv. Funct. Mater. 17, 2847–2854 (2007)

    Article  Google Scholar 

  11. C.L. Robert, J.W. Long, K.A. Pettigrew, R.M. Stroud, D.R. Rolison, Ionic nanowires at 600 °C: using nanoarchitecture to optimize electrical transport in nanocrystalline gadolinium-doped ceria. Adv. Mater. 19, 1734–1739 (2007)

    Article  Google Scholar 

  12. U. Anselmi-Tamburini, F. Maglia, G. Chiodelli, A. Tacca, G. Spinolo, P. Riello, S. Bucella, Z.A. Munir, Nanoscale effects on the ionic conductivity of highly doped bulk, nanometric cerium oxide. Adv. Funct. Mater. 16, 2363–2368 (2006)

    Article  Google Scholar 

  13. R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, G. Ravi, Effect of rf power on the properties of magnetron sputtered CeO2 thin films. J. Mater. Sci. Mater. Electron. 26, 2800–2809 (2015)

    Article  Google Scholar 

  14. T. Inoue, T. Ohsuna, L. Luo, X.D. Wu, C.J. Maggiore, Y. Yamamoto, Y. Sakurai, J.H. Chang, Growth of (110)‐oriented CeO2 layers on (100) silicon substrates. Appl. Phys. Lett. 59, 3604 (1991). (3 pages)

    Article  Google Scholar 

  15. Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, N. Fukushima, Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si (111). Appl. Phys. Lett. 81, 4386 (2002)

    Article  Google Scholar 

  16. A.S. Deshpande, N. Pinna, P. Beato, M. Antonietti, M. Niederberger, Synthesis and characterization of stable and crystalline Ce1−x Zrx O2 nanoparticle sols. Chem. Mater. 16, 2599–2604 (2004)

    Article  Google Scholar 

  17. V. Petrovsky, B.P. Gorman, H.U. Anderson, T. Petrovsky, Optical properties of CeO2 films prepared from colloidal suspension. J. Appl. Phys. 90, 2517 (2001). (5 pages)

    Article  Google Scholar 

  18. A. Tiwari, V.M. Bosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 88, 142511 (2006). (3 pages)

    Article  Google Scholar 

  19. M.T. Ta, D. Briand, Y. Guhel, J. Bernard, J.C. Pesant, B. Boudart, Growth and structural characterization of cerium oxide thin films realized on Si(111) substrates by on-axis r.f. magnetron sputtering. Thin Solid Films 517, 450–452 (2008)

    Article  Google Scholar 

  20. T. Inoue, Y. Nagata, S. Shida, K. Kato, Characterization of orientation-selective-epitaxial CeO2 layers on Si(100) substrates by x-ray diffraction and cross-sectional transmission electron microscopy. J. Vac. Sci. Technol. A 25, 1128–1132 (2007)

    Article  Google Scholar 

  21. D.M.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Mater. Res. 19, 478–482 (2016)

    Article  Google Scholar 

  22. R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 5, 2573–2577 (2005)

    Article  Google Scholar 

  23. H.C. Aspinall, J. Bacsa, A.C. Jones, J.S. Wrench, Ce(IV) complexes with donor-functionalized alkoxide ligands: improved precursors for chemical vapor deposition of CeO2. Inorg. Chem. 50, 11644–11652 (2011)

    Article  Google Scholar 

  24. S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-Arporn, S. Maensiri, Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res. Lett. 7, 1–13 (2012)

    Article  Google Scholar 

  25. N.I. Santha, M.T. Sebastian, P. Mohanan, N.M. Alford, K. Sarma, R.C. Pullar, S. Kamba, A. Pashkin, P. Samukhina, J. Petzelt, Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range. J. Am. Ceram. Soc. 87, 1233–1237 (2004)

    Article  Google Scholar 

  26. M.S. Dresselhaus, I.L. Thomas, Overview alternative energy technologies. Nature 414, 332–337 (2001)

    Article  Google Scholar 

  27. E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)

    Article  Google Scholar 

  28. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Synthesis and UV-shielding properties of ZnO and CaO-doped CeO2 via soft solution chemical process. Solid State Ion. 151, 235–241 (2002)

    Article  Google Scholar 

  29. M.G. Sanchez, J.L. Gazquez, Oxygen vacancy model in strong metal-support interaction. J. Catal. 104, 120–135 (1987)

    Article  Google Scholar 

  30. N. Izu, W. Shin, N. Murayarna, S. Kanzaki, Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis. Sens. Actuators B Chem. 87, 95–98 (2002)

    Article  Google Scholar 

  31. E. Kumar, P. Selvarajan, D. Muthuraj, Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mater. Res. 16, 269–276 (2013)

    Article  Google Scholar 

  32. R.M. Mahani, S.Y. Marzouk, AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 Glasses. J. Alloys Compd. 579, 394–400 (2013)

    Article  Google Scholar 

  33. J. Lappalainen, H.L. Tuller, V. Lantto, Electronic conductivity and dielectric properties of nanocrystalline CeO2 films. J. Electroceram. 13, 129–133 (2004)

    Article  Google Scholar 

  34. R.C. Deus, R.A.C. Amoresi, P.M. Desimone, F. Schipani, L.S.R. Rocha, M.A. Ponce, A.Z. Simoes, E. Longo, Electrical behavior of cerium dioxide films exposed to different gases atmospheres. Ceram. Int. 42, 15023–15029 (2016)

    Article  Google Scholar 

  35. Y.V. Didenko, Y.M. Poplavko, High frequency dielectrics: nature of loss, in IEEE XXXIV International Scientific Conference Electronics and Nanotechnology (2014), pp 73–77

  36. M.H. Khan, S. Pal, E. Bose, Frequency-dependent dielectric permittivity and electric modulus studies and an empirical scaling in (100−x)BaTiO3/(x)La0.7Ca0.3MnO3 composites. Appl. Phys. A 118, 907–912 (2015)

    Article  Google Scholar 

  37. B. Lee, T. Moon, T.G. Kim, D.K. Choi, B. Park, Dielectric barrier hollow cathode discharge and its enhanced performance for light source. Appl. Phys. Lett. 87, 261502 (2005)

    Article  Google Scholar 

  38. P. Pissis, A. Kyritsis, Electrical conductivity studies in hydrogels. Solid State Ion. 97, 105–113 (1997)

    Article  Google Scholar 

  39. R. Mukherjee, S. Chanda, C. Bharti, P. Sahu, T.P. Sinha, Micro-structure, optical properties and ac conductivity of rare earth double perovskite oxides: Sr2ErNbO6. Phys. B 422, 78–82 (2013)

    Article  Google Scholar 

  40. A. Moguš-Milanković, B. Šantić, D.E. Day, C.S. Ray, Dielectric behavior and impedance spectroscopy of bismuth iron phosphate glasses. J. Non-Cryst. Solids 351, 3235–3245 (2005)

    Article  Google Scholar 

  41. D.P. Almond, A.R. West, Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ion. 11, 57–64 (1983)

    Article  Google Scholar 

  42. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, Electrical relaxation in Na2O·3SiO2 glass. J. Am. Ceram. Soc. 55, 492–496 (1972)

    Article  Google Scholar 

  43. S. Saha, T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B 65, 134103 (2002)

    Article  Google Scholar 

  44. N. Singh, A. Agarwal, S. Sanghi, S. Khasa, Dielectric loss, conductivity relaxation process and magnetic properties of Mg substituted Ni–Cu ferrites. J. Magn. Magn. Mater. 324, 2506–2511 (2012)

    Article  Google Scholar 

  45. C.R. Mariappan, G. Govindaraj, B. Roling, Lithium and potassium ion conduction in A3TiB′P3O12 (A = Li, K; B′ = Zn, Cd) NASICON-type glasses. Solid State Ion. 176, 723 (2005)

    Article  Google Scholar 

  46. D.C. Onwudiwe, T. Arfin, C.A. Strydom, R.J. Kriek, A study of the thermal and AC impedance properties of N-phenyldithiocarbamate complexes of Zn(II). Electrochim. Acta 109, 809–817 (2013)

    Article  Google Scholar 

  47. H.B. Lal, K. Gaur, Electrical conduction in non-metallic rare-earth solids. J. Mater. Sci. 23, 919–923 (1988)

    Article  Google Scholar 

  48. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  49. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002)

    Article  Google Scholar 

  50. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  51. W.K. Lee, J.F. Liu, A.S. Nowick, Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys. Rev. Lett. 67, 1559–1561 (1991)

    Article  Google Scholar 

  52. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    Article  Google Scholar 

  53. M.H. Rahman, A.M. Al-Saie, J. Beyyon, AC electrical conductivity of electron beam evaporated Cu-GeO2 thin cermet films. J. Mater. Sci. 35, 5899–5905 (2000)

    Article  Google Scholar 

  54. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012). (5 pages)

    Article  Google Scholar 

  55. D.P. Almond, A.R. West, The activation entropy for transport in ionic conductors. Solid State Ion. 23, 27–35 (1987)

    Article  Google Scholar 

  56. S. Saha, T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B 65, 134103 (2002). (7 pages)

    Article  Google Scholar 

  57. P.S. Anantha, K. Hariharan, Ac Conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater. Sci. Eng. B 121, 12–19 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Hassanien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nahass, M.M., Hassanien, A.M., Atta, A.A. et al. Electrical conductivity and dielectric relaxation of cerium (IV) oxide. J Mater Sci: Mater Electron 28, 1501–1507 (2017). https://doi.org/10.1007/s10854-016-5688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5688-6

Keywords

Navigation