Skip to main content

Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction

Abstract

Graphene, an outstanding material with remarkable electrical, mechanical and thermal properties, has found tremendous potential in electronic devices. Here we report the direct and irreversible reduction of graphene oxide (GO) ultrathin film (UTF) by application of 30 V bias on GO device under the ambient condition. During the process, an ultrahigh current density flowed through UTF resulting in the Joule-heat generation. The heat effectively removed the oxygen-containing groups from GO and restored graphene layer π-conjugated system reducing the electrical resistance down to ~10.7 Ω. The film also exhibited a linear, symmetric and hysteresis-free current response to the biases in the range of −2 to 2 V. Moreover, the sheet resistance as low as ~125 Ω/□ and optical transmittance of 91 % at 550 nm demonstrated that the reduced GO (rGO) UTF is superior to the conventional transparent electrodes. The rGO transparent conductive film sustained an ultrahigh current density in the order of 107 A cm−2 and showed high current stability in the saturated state, which make it an ideal candidate for transparent electrode applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    H. Feng, R. Cheng, X. Zhao, X.F. Duan, J. Li, Nat. Commun. 4, 1539 (2013)

    Article  Google Scholar 

  2. 2.

    B. Wang, M. Huang, L. Tao, S.H. Lee, A.-R. Jang, B.-W. Li, H.S. Shin, D. Akinwande, R.S. Ruoff, ACS Nano 10, 1404 (2016)

    Article  Google Scholar 

  3. 3.

    J. Yun, Y. Lim, G.N. Jang, D. Kim, S.-J. Lee, H. Park, S.Y. Hong, G. Lee, G. Zi, J.S. Ha, Nano Energy 19, 401 (2016)

    Article  Google Scholar 

  4. 4.

    J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, ACS Appl. Mater. Interfaces 8, 4724 (2016)

    Article  Google Scholar 

  5. 5.

    S. Majee, M. Song, S.-L. Zhang, Z.-B. Zhang, Carbon 102, 51 (2016)

    Article  Google Scholar 

  6. 6.

    M.C.F. Costa, H.B. Ribeiro, F. Kessler, E.A. Souza, G.J. Fechine, Mater. Res. Express 3, 025303 (2016)

    Article  Google Scholar 

  7. 7.

    X. Li, L. Colombo, R.S. Ruoff, Adv. Mater. (2016). doi:10.1002/adma.201504760

    Google Scholar 

  8. 8.

    F.D. Natterer, J. Ha, H. Baek, D. Zhang, W.G. Cullen, N.B. Zhitenev, Y. Kuk, J.A. Stroscio, Phys. Rev. B 93, 045406 (2016)

    Article  Google Scholar 

  9. 9.

    O. Akhavan, Carbon 81, 158 (2015)

    Article  Google Scholar 

  10. 10.

    H. Tang, X.H. Xia, Y.J. Zhang, Y.Y. Tong, X.L. Wang, C.D. Gu, J.P. Tu, Electrochim. Acta 180, 1068 (2015)

    Article  Google Scholar 

  11. 11.

    C. Wu, J. Jiu, T. Araki, H. Koga, T. Sekitani, H. Wang, K. Suganuma, RSC Adv. 6, 15838 (2016)

    Article  Google Scholar 

  12. 12.

    O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, ACS Nano 5, 2475 (2011)

    Article  Google Scholar 

  13. 13.

    G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotech. 3, 270 (2008)

    Article  Google Scholar 

  14. 14.

    S.Z. Moghaddam, S. Sabury, F. Sharif, RSC Adv. 4, 8711 (2014)

    Article  Google Scholar 

  15. 15.

    N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif, J.-K. Kim, J. Mater. Chem. 22, 12709 (2012)

    Article  Google Scholar 

  16. 16.

    Z.-Z. Yang, Q. Zheng, H. Qiu, J. Li, J.-H. Yang, New Carbon Mater. 30, 41 (2015)

    Article  Google Scholar 

  17. 17.

    A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Chem. Mater. 24, 2292 (2012)

    Article  Google Scholar 

  18. 18.

    P.V. Kumar, N.M. Bardhan, G.-Y. Chen, Z. Li, A.M. Belcher, J.C. Grossman, Carbon 100, 90 (2016)

    Article  Google Scholar 

  19. 19.

    S.-N. Kwon, C.-H. Jung, S.-I. Na, Org. Electron. 34, 67 (2016)

    Article  Google Scholar 

  20. 20.

    Y. He, J. Li, K. Luo, L. Li, J. Chen, J. Li, Ind. Eng. Chem. Res. 55, 3775 (2016)

    Article  Google Scholar 

  21. 21.

    Y. Zhang, H.-L. Ma, Q. Zhang, J. Peng, J. Li, M. Zhai, Z.-Z. Yu, J. Mater. Chem. 22, 13064 (2012)

    Article  Google Scholar 

  22. 22.

    N. Kim, G. Xin, S.M. Cho, C. Pang, H. Chae, Curr. Appl. Phys. 15, 953 (2015)

    Article  Google Scholar 

  23. 23.

    A.A. Vernekar, G. Mugesh, Chem. Eur. J. 19, 16699 (2013)

    Article  Google Scholar 

  24. 24.

    X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, M. Gu, Nat. Commun. 6, 6984 (2015)

    Article  Google Scholar 

  25. 25.

    Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, ACS Appl. Mater. Interfaces 2, 3461 (2010)

    Article  Google Scholar 

  26. 26.

    P. Yao, P. Chen, L. Jiang, H. Zhao, H. Zhu, D. Zhou, W. Hu, B. Han, M. Liu, Adv. Mater. 22, 5008 (2010)

    Article  Google Scholar 

  27. 27.

    M.M. Gudarzi, F. Sharif, Soft Matter 7, 3432 (2011)

    Article  Google Scholar 

  28. 28.

    K.H. Lee, B. Lee, S.-J. Hwang, J.-U. Lee, H. Cheong, O.-S. Kwon, K. Shin, N. Hur, Carbon 69, 327 (2014)

    Article  Google Scholar 

  29. 29.

    N.V. Medhekar, A. Ramasubramaniam, R.S. Ruoff, V.B. Shenoy, ACS Nano 27, 2300 (2010)

    Article  Google Scholar 

  30. 30.

    A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J. Mater. Sci. Mater. Electron. 27, 8221 (2016)

    Article  Google Scholar 

  31. 31.

    A.C. Ferrari, D.M. Basko, Nat. Nanotech. 8, 235 (2013)

    Article  Google Scholar 

  32. 32.

    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  33. 33.

    Q. Zheng, W. Hing, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, J. Kim, ACS Nano 5, 6039 (2011)

    Article  Google Scholar 

  34. 34.

    Y. Tu, T. Ichii, T. Utsunomiya, H. Sugimura, Appl. Phys. Lett. 106, 133105 (2015)

    Article  Google Scholar 

  35. 35.

    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112 (2010)

    Article  Google Scholar 

  36. 36.

    H. Liu, L. Zhang, Y. Guo, C. Cheng, L. Yang, L. Jiang, G. Yu, W. Hu, Y. Liu, D. Zhu, J. Mater. Chem. C 1, 3104 (2013)

    Article  Google Scholar 

  37. 37.

    M.A. Velasco-Soto, S.A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, L. Licea-Jiménez, Carbon 93, 967 (2015)

    Article  Google Scholar 

  38. 38.

    R. Kumar, S. Naqvi, N. Gupta, K. Gaurav, S. Khan, P. Kumar, A. Rana, R.K. Singh, R. Bharadwaj, S. Chand, RSC Adv. 5, 35893 (2015)

    Article  Google Scholar 

  39. 39.

    Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, AIP Adv. 2, 032146 (2012)

    Article  Google Scholar 

  40. 40.

    L.G. De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C. Zhou, ACS Nano 4, 2865 (2010)

    Article  Google Scholar 

  41. 41.

    X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Nano Lett. 9, 4359 (2009)

    Article  Google Scholar 

  42. 42.

    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. Song, Y. Kim, K.S. Kim, B. Ozyilmaz, J. Ahn, B.H. Hong, S. Iijima, Nat. Nanotech. 5, 574 (2010)

    Article  Google Scholar 

  43. 43.

    K. Huang, Y. Yang, Y. Qin, G. Yang, Int. J. Adv. Manuf. Technol. 69, 2651 (2013)

    Article  Google Scholar 

  44. 44.

    F.L. Bakker, J. Flipse, B.J. Wees, J. Appl. Phys. 111, 084306 (2012)

    Article  Google Scholar 

  45. 45.

    J. Moser, A. Barreiro, A. Bachtold, Appl. Phys. Lett. 91, 163513 (2007)

    Article  Google Scholar 

  46. 46.

    A. Malapanis, E. Comfort, J.U. Lee, Appl. Phys. Lett. 98, 263108 (2011)

    Article  Google Scholar 

  47. 47.

    A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake, K. Mibu, T. Shinjo, Appl. Phys. Lett. 86, 012511 (2005)

    Article  Google Scholar 

  48. 48.

    A.B. Kaiser, C. Gómez-Navarro, R.S. Sundaram, M. Burghard, K. Kern, Nano Lett. 9, 1787 (2009)

    Article  Google Scholar 

  49. 49.

    V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B 193, 49 (2015)

    Article  Google Scholar 

  50. 50.

    Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, H. Zhang, ACS Nano 4, 3201 (2010)

    Article  Google Scholar 

  51. 51.

    V. López, R.S. Sundaram, C. Gómez-Navarro, D. Olea, M. Burghard, J. Gómez-Herrero, F. Zamora, K. Kern, Adv. Mater. 21, 4683 (2009)

    Article  Google Scholar 

  52. 52.

    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008)

    Article  Google Scholar 

  53. 53.

    D. Kang, W.-J. Kim, J.A. Lim, Y.-W. Song, ACS Appl. Mater. Interfaces 4, 3663 (2012)

    Article  Google Scholar 

  54. 54.

    S.J. Wang, Y. Geng, Q. Zheng, J.-K. Kim, Carbon 48, 1815 (2010)

    Article  Google Scholar 

  55. 55.

    S. Pei, H.-M. Cheng, Carbon 50, 3210 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Sharif.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazargan, A.M., Sharif, F., Mazinani, S. et al. Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. J Mater Sci: Mater Electron 28, 1419–1427 (2017). https://doi.org/10.1007/s10854-016-5676-x

Download citation

Keywords

  • Atomic Force Microscopy
  • Graphene Oxide
  • Field Emission Scan Electron Microscope
  • Resistive Switching
  • Versus Bias