Skip to main content
Log in

The substrate effect on Ge doped GaN thin films coated by thermionic vacuum arc

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study focuses on characterization and understanding of the substrate effect on Ge doped GaN thin films coated onto transparent substrates. The produced films were deposited onto unheated glass and unheated polyethylene terephthalate by using thermionic vacuum arc technique. Gallium nitride and germanium pellets were used in the thin film production. Reflectance, refractive index and thicknesses of Ge doped GaN thin films were measured by optical interferometer using Cauchy model for fitting. The transmittances were determined in the wavelength range between 200 and 1000 nm by using UV–Vis double beam spectrophotometer. The optical Tauc method was used to determine the band gap energies of produced thin films. Surface morphologies of produced thin films were characterized by atomic force microscopy and also field emission scanning electron microscopy. In conclusion, the substrate effect on the optical and morphological properties of the produced thin films was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Oshima, T. Yoshida, K. Watanabe, T. Mishima, Properties of Ge-doped, high-quality bulk GaN crystals fabricated by hydride vapor phase epitaxy. J. Cryst. Growth 312, 3569–3573 (2010)

    Article  Google Scholar 

  2. T. Honda, M. Shibata, M. Kurimoto, M. Tsubamoto, J. Yamamoto, H. Kawanishi, Band-gap energy and effective mass of BGaN. Jpn. J. Appl. Phys. 39, 2389 (2000)

    Article  Google Scholar 

  3. L. Teles, L. Scolfaro, J. Leite, J. Furthmüller, F. Bechstedt, Spinodal decomposition in BxGa1−xN and BxAl1−xN alloys. Appl. Phys. Lett. 80, 1177–1179 (2002)

    Article  Google Scholar 

  4. S. Pat, Ş. Korkmaz, S. Özen, V. Şenay, GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA). Mater. Chem. Phys. 159, 1–5 (2015)

    Article  Google Scholar 

  5. D.-W. Kang, J.-Y. Kwon, J. Shim, H.-M. Lee, M.-K. Han, Highly conductive GaN anti-reflection layer at transparent conducting oxide/Si interface for silicon thin film solar cells. Sol. Energy Mater. Sol. C 105, 317–321 (2012)

    Article  Google Scholar 

  6. S.L. Selvaraj, A. Watanabe, T. Egawa, Influence of deep-pits on the device characteristics of metal-organic chemical vapor deposition grown AlGaN/GaN high-electron mobility transistors on silicon substrate. Appl. Phys. Lett. 98, 252105 (2011)

    Article  Google Scholar 

  7. R. Kirste, M.P. Hoffmann, E. Sachet, M. Bobea, Z. Bryan, I. Bryan, C. Nenstiel, A. Hoffmann, J.-P. Maria, R. Collazo, Ge doped GaN with controllable high carrier concentration for plasmonic applications. Appl. Phys. Lett. 103, 242107 (2013)

    Article  Google Scholar 

  8. F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004)

    Article  Google Scholar 

  9. S. Nakamura, T. Mukai, M. Senoh, Si- and Ge-doped GaN films grown with GaN buffer layers. Jpn. J. Appl. Phys. 31, 2883 (1992)

    Article  Google Scholar 

  10. A. Dadgar, J. Bläsing, A. Diez, A. Krost, Crack-free, highly conducting GaN layers on Si substrates by Ge doping. Appl. Phys. Express 4, 011001 (2011)

    Article  Google Scholar 

  11. S. Fritze, A. Dadgar, H. Witte, M. Bügler, A. Rohrbeck, J. Bläsing, A. Hoffmann, A. Krost, High Si and Ge n-type doping of GaN doping-limits and impact on stress. Appl. Phys. Lett. 100, 122104 (2012)

    Article  Google Scholar 

  12. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004)

    Article  Google Scholar 

  13. P. Hageman, W. Schaff, J. Janinski, Z. Liliental-Weber, n-type doping of wurtzite GaN with germanium grown with plasma-assisted molecular beam epitaxy. J. Cryst. Growth 267, 123–128 (2004)

    Article  Google Scholar 

  14. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Investigation on the morphology and surface free energy of the AlGaN thin film. J. Alloys Compd. 653, 162–167 (2015)

    Article  Google Scholar 

  15. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc. Scanning 38, 14–20 (2015)

    Article  Google Scholar 

  16. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Deposition of a Mo doped GaN thin film on glass substrate by thermionic vacuum arc (TVA). J. Mater. Sci.: Mater. Electron. 26, 5060–5064 (2015)

    Google Scholar 

  17. K. Motoki, M. Ueno, Oxygen doping method to gallium nitride single crystal substrate, in, Google Patents, 2014

  18. M. Feneberg, K. Lange, C. Lidig, M. Wieneke, H. Witte, J. Bläsing, A. Dadgar, A. Krost, R. Goldhahn, Anisotropy of effective electron masses in highly doped nonpolar GaN. Appl. Phys. Lett. 103, 232104 (2013)

    Article  Google Scholar 

  19. E. Schubert, I. Goepfert, W. Grieshaber, J. Redwing, Optical properties of Si-doped GaN. Appl. Phys. Lett. 71, 921–923 (1997)

    Article  Google Scholar 

  20. P. Tchoulfian, F. Donatini, F. Levy, B. Amstatt, P. Ferret, J. Pernot, High conductivity in Si-doped GaN wires. Appl. Phys. Lett. 102, 122116 (2013)

    Article  Google Scholar 

  21. M.L. Colussi, R.J. Baierle, R.H. Miwa, Doping effects of C, Si and Ge in wurtzite [0001] GaN, AlN, and InN nanowires. J. Appl. Phys. 110, 033709 (2011)

    Article  Google Scholar 

  22. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Morphological and optical comparison of the Si doped GaN thin film deposited onto the transparent substrates. Mater. Res. Express 3, 045012 (2016)

    Article  Google Scholar 

  23. N. Zographos, A. Erlebach, Process simulation of dopant diffusion and activation in germanium. Phys. Status Solidi (a) 211, 143–146 (2014)

    Article  Google Scholar 

  24. T. Tsukamoto, N. Hirose, A. Kasamatsu, T. Mimura, T. Matsui, Y. Suda, Effects of boron dopants of Si (001) substrates on formation of Ge layers by sputter epitaxy method. Appl. Phys. Lett. 103, 172103 (2013)

    Article  Google Scholar 

  25. H.T. Chen, Y.F. Cheung, H.W. Choi, S.C. Tan, S. Hui, Reduction of thermal resistance and optical power loss using thin-film light-emitting diode (LED) structure. Ind Electron IEEE Trans 62, 6925–6933 (2015)

    Article  Google Scholar 

  26. L. Foglia, L. Bogner, M. Wolf, J. Stähler, Localization-dependent charge separation efficiency at an organic/inorganic hybrid interface. Chem. Phys. Lett. 646, 25–30 (2016)

    Article  Google Scholar 

  27. C. Han, Y. Du, X. Meng, F. Wu, Y. Fang, Enhancement of up-conversion emissions in ZnO: Er3+–Yb3+ after Gd2 O3 surface modification. Appl. Surf. Sci. 274, 60–63 (2013)

    Article  Google Scholar 

  28. J.F. Sánchez-Royo, G. Muñoz-Matutano, M. Brotons-Gisbert, J.P. Martínez-Pastor, A. Segura, A. Cantarero, R. Mata, J. Canet-Ferrer, G. Tobias, E. Canadell, Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014)

    Article  Google Scholar 

  29. J.-H. Yang, L. Shi, L.-W. Wang, S.-H. Wei, Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 6, 21712 (2016)

    Article  Google Scholar 

  30. I.-H. Lee, J. Lee, P. Kung, F. Sanchez, M. Razeghi, Band-gap narrowing and potential fluctuation in Si-doped GaN. Appl. Phys. Lett. 74, 102–104 (1999)

    Article  Google Scholar 

  31. M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M.D. Neumann, N. Esser, Band gap renormalization and Burstein–Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm−3. Phys. Rev. B 90, 075203 (2014)

    Article  Google Scholar 

  32. M. Huang, A. Dumon, C.-W. Nan, Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochem. Commun. 21, 62–64 (2012)

    Article  Google Scholar 

  33. S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Optical, morphological properties and surface energy of the transparent Li4Ti5O12 (LTO) thin film as anode material for secondary type batteries. J. Phys. D Appl. Phys. 49, 105303 (2016)

    Article  Google Scholar 

  34. D. Herman, J. Sicha, J. Musil, Magnetron sputtering of TiOxNy films. Vacuum 81, 285–290 (2006)

    Article  Google Scholar 

  35. M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97, 011103 (2010)

    Article  Google Scholar 

  36. I.-K. Park, S.-J. Park, Green gap spectral range light-emitting diodes with self-assembled InGaN quantum dots formed by enhanced phase separation. Appl. Phys. Express 4, 042102 (2011)

    Article  Google Scholar 

  37. J. Brown, F. Wu, P. Petroff, J. Speck, GaN quantum dot density control by rf-plasma molecular beam epitaxy. Appl. Phys. Lett. 84, 690–692 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank support by the Scientific Research Projects Commission of Eskişehir Osmangazi University (Project Number: 201619A218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soner Özen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özen, S., Korkmaz, Ş., Şenay, V. et al. The substrate effect on Ge doped GaN thin films coated by thermionic vacuum arc. J Mater Sci: Mater Electron 28, 1288–1293 (2017). https://doi.org/10.1007/s10854-016-5657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5657-0

Keywords

Navigation