The microwave absorbing properties of La0.8K0.2MnO3 synthesized by sol–gel method

  • Shuang Zhao
  • Ji ZhengEmail author
  • Biao Shi
  • Lihua He
  • Zhongyi Liu


In this paper, La0.8K0.2MnO3 powder was synthesized by sol–gel method. The phase structure, morphology of the composite have been characterized by X-ray diffraction, field emission scanning electron microscope. Testing of the microwave absorption was carried out by using the network analyzer Agilent HP-8722ES at room temperature. The results show that the La0.8K0.2MnO3 powder has excellent absorbing property. The maximum reflection loss is −33.51 dB at about 12.22 GHz with a thickness of only 1.25 mm. Moreover, the bandwidth with the reflection loss above 10 dB reaches about 2.1 GHz.


Dielectric Loss Relative Permeability Microwave Absorption Reflection Loss Microwave Absorption Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Sun, Q. Zou, Y. Wang, Y. Wang, W. Jiang, F. Li, Nanoscale 6, 6557–6562 (2014)CrossRefGoogle Scholar
  2. 2.
    S.H. Hosseini, A. Asadnia, M. Moloudi, Mater. Res. Innov. 19, 107–112 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Qing, W. Zhou, F. Luo, D. Zhu, J. Magn. Magn. Mater. 321, 25–28 (2009)CrossRefGoogle Scholar
  4. 4.
    J.H.M. Gan, Q.Q. Ni, T. Natsuki, J. Alloys Compd. 615, 84–90 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Xie, D. Geng, X. Liu, S. Ma, Z. Zhang, J. Mater. Sci. Technol. 27, 607–614 (2011)CrossRefGoogle Scholar
  6. 6.
    X. Liu, X. Cui, Y. Chen, X.J. Zhang, R. Yu, G.S. Wang, H. Ma, Carbon 95, 870–878 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Zhang, F. Xu, J. Lin et al., Carbon 80, 103–111 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Li, G.G. Hu, H.D. Zhou, X.J. Fan, X.G. Li, Mater. Chem. Phys. 75, 101–104 (2002)CrossRefGoogle Scholar
  9. 9.
    T. Nakajima, Y. Ueda, J. Alloys Compd. 383, 135–139 (2004)CrossRefGoogle Scholar
  10. 10.
    Y.S. Nam, H.L. Ju, C.W. Park, Solid State Commun. 119, 613–618 (2001)CrossRefGoogle Scholar
  11. 11.
    W. Chen, J. Zheng, Y. Li, J. Alloys Compd. 513, 420–424 (2012)CrossRefGoogle Scholar
  12. 12.
    X.F. Zhang, X.L. Dong, H. Huang, B. Lv, J.P. Lei, C.J. Choi, J. Phys. D Appl. Phys. 40, 5383–5387 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Zhang, Q. Cao, M. Zhang, X. Shi, J. Appl. Phys. 113, 074903 (2013)CrossRefGoogle Scholar
  14. 14.
    S.Y. Zhang, Q.X. Cao, Mater. Sci. Eng. B 177, 678–684 (2012)CrossRefGoogle Scholar
  15. 15.
    C.Y. Tsay, R.B. Yang, D.S. Hung, Y.H. Hung, Y.D. Yao, C.K. Lin, J. Appl. Phys. 107, 09A502-1–09A502-3 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Boudaya, L. Laroussi, E. Dhahri, J.C. Joubert, A. Cheikhrouhou, J. Phys. Condens. Matter 10, 7485–7492 (1998)CrossRefGoogle Scholar
  17. 17.
    J.R. Liu, M. Itoh, K. Machida, Appl. Phys. Lett. 83, 4017–4019 (2003)CrossRefGoogle Scholar
  18. 18.
    S. Huang, L. Deng, K. Zhou, Z. Hu, S. Sun, Y. Ma, P. Xiao, J. Magn. Magn. Mater. 324, 3149–3153 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Zhao, J. Zheng, F. Jiang, Y. Song, M. Sun, X. Song, J. Mater. Sci.: Mater. Electron. 26, 1–6 (2015)Google Scholar
  20. 20.
    F. Jiang, J. Zheng, L. Liang, M. Zhang, Y. Wang, J. Mater. Sci.: Mater. Electron. 26, 2243–2247 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shuang Zhao
    • 1
  • Ji Zheng
    • 1
    Email author
  • Biao Shi
    • 1
  • Lihua He
    • 2
  • Zhongyi Liu
    • 1
  1. 1.Department of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjinChina
  2. 2.Beijing Institute of Aerial MaterialsChina Aviation Industry CorporationBeijingChina

Personalised recommendations