Skip to main content

Advertisement

Log in

Effects of NiNb2O6 doping on dielectric property, microstructure and energy storage behavior of Sr0.97La0.02TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sr0.97La0.02TiO3 ceramics with samll amounts of NiNb2O6 additives were prepared by the traditional solid state sintering method, and the phase purity, microstructure, dielectric properties and energy storage behavior of the NiNb2O6-added Sr0.97La0.02TiO3 ceramics were investigated. The results show that the grain size of the ceramics firstly decreases and then increases with increasing NiNb2O6 concentration. The average grain size reaches 0.55 um for the sample with 4.5 wt% NiNb2O6. Moreover, impedance spectroscopy (IS) analysis was employed to study the electrical conductive behavior of NiNb2O6-doped Sr0.97La0.02TiO3 ceramics. IS results reveale that the NiNb2O6-doped Sr0.97La0.02TiO3 ceramic has large R gb /(R gb  + R g ) ratios due to the decreased grain sizes. The breakdown strength is notably improved, and the highest breakdown strength of 324 kV/cm can be achieved for the sample with 4.5 wt% NiNb2O6 additive. The Sr0.97La0.02TiO3 sample with 4.5 wt% NiNb2O6 possesses the maximum theoretical energy density of 1.36 J/cm3, which is about 2 times higher than that of pure SrTiO3 in the literature. And its energy storage efficiency reaches 91.4 % under applied electric field of 80 kV/cm. This study provides the NiNb2O6 added ceramic as an attractive candidate for making high-energy density capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Am. Ceram. Soc. 96, 2551 (2013)

    Article  Google Scholar 

  2. Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro, M. Roybal, M. Joler, C. Christodoulou, PPC-2003: 14th IEEE international pulsed power conference. 1, 719 (2003).

  3. G. Dong, S. Ma, J. Du, J. Cui, Ceram. Int. 35, 2069 (2009)

    Article  Google Scholar 

  4. G.F. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, J. Mater. Sci. Mater. Electron 26, 2726 (2015)

    Article  Google Scholar 

  5. A.D. Hilton, B.W. Ricketts, J. Phys. D Appl. Phys. 29, 1321 (1996)

    Article  Google Scholar 

  6. G. Triani, A.D. Hilton, B.W. Ricketts, J. Mater. Sci:Mater. Electron. 12, 17 (2001)

    Google Scholar 

  7. R.P. Wang, Y. Inaguma, M. Itoh, Mater. Res. Bull. 36, 1693 (2001)

    Article  Google Scholar 

  8. Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, J. Mater. Sci. Mater. Electron. 24, 704 (2013)

    Article  Google Scholar 

  9. Q.G. Hu, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Z.X. Xie, Ceram. Int. 40, 2529 (2014)

    Article  Google Scholar 

  10. G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, Z. Yu, J. Chem. Res. 13, 310 (2012)

    Google Scholar 

  11. Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Ceram. Int. 40, 14127 (2014)

    Article  Google Scholar 

  12. L. Li, X. Yu, H. Cai, Q. Liao, Y. Han, Z. Gao, Mater. Sci. Eng. B 178, 1509 (2013)

    Article  Google Scholar 

  13. J. Zheng, G.H. Chen, X. Chen, Q.N. Li, J.W. Xu, C.L. Yuan, C.R. Zhou, J. Mater. Sci. Mater. Electron 27, 3759 (2016)

    Article  Google Scholar 

  14. S. Chao, F. Dogan, Mater. Lett. 65, 978 (2011)

    Article  Google Scholar 

  15. Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, J. Am. Ceram. Soc. 94, 1805 (2011)

    Article  Google Scholar 

  16. X. Wang, Y. Zhang, X. Song, Z. Yuan, T. Ma, Q. Zhang, C. Deng, T. Liang, J. Eur. Ceram. Soc. 32, 559 (2012)

    Article  Google Scholar 

  17. L. Hyo Jong, K. In Tae, H. Kug Sun, Jpn. J. Appl. Phys. 36, L1318 (1997)

    Article  Google Scholar 

  18. R.D. Shannon, Acta Cryst. 32, 751 (1976)

    Article  Google Scholar 

  19. C. Karthik, K.B.R. Varma, Mater. Sci. Eng. B 129, 245 (2006)

    Article  Google Scholar 

  20. P.K. Patro, A.R. Kulkarni, C.S. Harendranath, Mater. Res. Bull. 38, 249 (2003)

    Article  Google Scholar 

  21. C. Dervos, Mater. Lett. 58, 1502 (2004)

    Article  Google Scholar 

  22. Y. Xia, Z. Liu, Y. Wang, L. Shi, L. Chen, J. Yin, X. Meng, Appl. Phys. Lett. 91, 102904 (2007)

    Article  Google Scholar 

  23. S.H. Yoon, C.A. Randall, K.H. Hur, J. Appl. Phys. 107, 103721 (2010)

    Article  Google Scholar 

  24. S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 92, 1758 (2009)

    Article  Google Scholar 

  25. A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, J. Mater. Sci. 42, 5613 (2007)

    Article  Google Scholar 

  26. J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 042902 (2010)

    Article  Google Scholar 

  27. Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan, Ceram. Int. 38, 4765 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC No. 51162002), Science and Technology Project of Guangxi Returned Personnel (Contract No. 2012-250) and the Research funds of The Guangxi Key Laboratory of Information Materials (Project No. 151011-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.C., Chen, G.H., Yuan, C.L. et al. Effects of NiNb2O6 doping on dielectric property, microstructure and energy storage behavior of Sr0.97La0.02TiO3 ceramics. J Mater Sci: Mater Electron 28, 1151–1158 (2017). https://doi.org/10.1007/s10854-016-5640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5640-9

Keywords

Navigation