Skip to main content
Log in

Cadmium oxide based efficient electrocatalyst for hydrogen peroxide sensing and water oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, plant-mediated synthesis of cadmium oxide nanoparticles (CdO NPs) have been reported using hydrazine as reducing agent and aqueous extract of Convolvulus arvensis as capping ligand. The synthesized nanomaterial was characterized by using different techniques like UV–visible, FT-IR, FESEM, XRD, EDS and TGA. FESEM image showed the average crystallite size to be 23 ± 2 nm. TGA was carried out for thermal stability which showed that the synthesized nanoparticles were stable up to 365 °C. The electro-catalytic properties of synthesized nanomaterials were investigated for the oxidation of H2O2 and H2O. The response of the physically modified electrode was examined using cyclic voltammetry and DC potential amperometry (DCPA vs. Ag/AgCl reference electrode) in a phosphate buffer (pH = 7.0). The designed H2O2 biosensor illustrated high sensitivity 4.9757 μA mM−1 cm−2, wide linear calibration range from 1 to 30 mM and detection limit of 1.6172 mM. The nanoparticles also displayed high electrocatalytic properties for the oxidation of water using linear sweep voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Liu, J. Tian, J. Zhai, L. Wang, W. Lu, X. Sun, Titanium silicalite-1 zeolite microparticles for enzymeless H2O2 detection. Analyst 136, 2037–2039 (2011)

    Article  Google Scholar 

  2. X. Xu, S. Liu, H. Ju, A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors 3, 350–360 (2003)

    Article  Google Scholar 

  3. G. Scandurra, A. Arena, C. Ciofi, G. Saitta, Electrical characterization and hydrogen peroxide sensing properties of gold/nafion:polypyrrole/MWCNTs electrochemical devices. Sensors 13, 3878–3888 (2013)

    Article  Google Scholar 

  4. A.S. Kumar, S. Sornambikai, Selective amperometric sensing of hydrogen peroxide with nafion/copper particulates chemically modified electrode. Ind. J. Chem. 48A, 940–945 (2009)

    Google Scholar 

  5. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  6. M. Walter, E. Warren, S. Boettcher, M. Qixi, J. Mckone, L. Santori, N. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  Google Scholar 

  7. K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 169, 59–79 (2011)

    Article  Google Scholar 

  8. A.M. Fayaz, M. Girilal, M. Rahman, R. Venkatesan, P.T. Kalaichelvan, Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem. 46, 1958–1962 (2011)

    Article  Google Scholar 

  9. S. Reddy, B.E.K. Swamy, U. Chandra, B.S. Sherigara, H. Jayadevappa, Synthesis of CdO nanoparticles and their modified carbon paste electrode for determination of dopamine and ascorbic acid by using cyclic voltammetry technique. Int. J. Electrochem. Sci. 5, 10–17 (2010)

    Google Scholar 

  10. J.K. Andeani, S. Mohsenzadeh, Phytosynthesis of cadmium oxide nanoparticles from achillea wilhelmsii flowers. J Chem (2013). doi:10.1155/2013/147613

    Google Scholar 

  11. S.B. Khan, M.M. Rahman, A.M. Asiri, S.A.B. Asif, S.A.S. Al-Qarni, A.G. Al-Sehemi, S.A. Al-Sayari, M.S. Al-Assiri, Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2. Phys. E 62, 21–27 (2014)

    Article  Google Scholar 

  12. S.B. Khan, K.S. Karimov, M.T.S. Chani, A.M. Asiri, K. Akhtar, N. Fatima, Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Microchim. Acta 182, 2019–2026 (2015)

    Article  Google Scholar 

  13. S.B. Khan, A.M. Asiri, K. Akhtar, M.A. Rub, Development of electrochemical sensor based on layered double hydroxide as a marker of environmental toxin. J. Ind. Eng. Chem. 30, 234–238 (2015)

    Article  Google Scholar 

  14. S.B. Khan, M.M. Rahman, K. Akhtar, A.M. Asiri, M.A. Rub, Nitrophenol chemi-sensor and active solar photocatalyst based on spinel hetaerolite nanoparticles. PLoS One 9, e85290 (2014)

    Article  Google Scholar 

  15. M.C. Tsai, Y.C. Tsai, Adsorption of glucose oxidase at platinum-multi-walled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor. Sens. Actuators B 141, 592–598 (2009)

    Article  Google Scholar 

  16. A.M. Bazargan, S.M.A. Fateminia, M.E. Ganji, M.A. Bahrevar, Electrospinning preparation and characterization of cadmium oxide nanofibers. Chem. Eng. J. 155, 523–527 (2009)

    Article  Google Scholar 

  17. S.B. Khan, F. Ali, T. Kamal, Y. Anwar, A.M. Asiri, J. Seo, CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int. J. Biol Macromol. 88, 113–119 (2016)

    Article  Google Scholar 

  18. M. Noruzi, D. Zare, D. Davoodi, A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature, Spectrochim. Acta A 94, 84–88 (2012)

    Article  Google Scholar 

  19. D.S. Balaji, S. Basavaraja, R. Deshpandeb, D. Bedre Mahesh, B.K. Prabhakara, A. Venkataraman, Extracellular biosynthesis of functionalized silver nanoparticles by strains of cladosporium cladosporioides fungus. Colloids Surf. B 68, 88–92 (2009)

    Article  Google Scholar 

  20. M. Mazaheritehrani, J. Asghari, R.L. Orimi, S. Pahlavan, Microwave-assisted synthesis of nano-sized cadmium oxide as a new And highly efficient catalyst for solvent free acylation of amines and alcohols. Asian J. Chem. 22(4), 2554–2564 (2010)

    Google Scholar 

  21. D. Inbakandan, G. Sivaleela, D. MageshPeter, R. Kiurbagaran, R. Venkatesan, Marine sponge extract assisted biosynthesis of silver nanoparticles. Mater. Lett. 87, 66–68 (2012)

    Article  Google Scholar 

  22. S.A.B. Asif, S.B. Khan, A.M. Asiri, Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res. Lett. 9, 510 (2014)

    Article  Google Scholar 

  23. T. Ahmad, I.A. Wani, N. Manzoor, J. Ahmed, A.M. Asiri, Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B 107, 227–234 (2013)

    Article  Google Scholar 

  24. M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81, 5603–5613 (2009)

    Article  Google Scholar 

  25. X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode. Electrochim. Acta 80, 346–353 (2012)

    Article  Google Scholar 

  26. B.G. Choi, H.S. Park, T.J. Park, M.H. Yang, J.S. Kim, S.Y. Jang, N.S. Heo, S.Y. Lee, J. King, W.H. Hong, Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4, 2910–2918 (2010)

    Article  Google Scholar 

  27. M.M. Khan, S.A. Ansari, J. Lee, Novel Ag@ TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater. Sci. Eng. C 33, 4692–4699 (2013)

    Article  Google Scholar 

  28. H. Tüysüz, Y.J. Hwang, S.B. Khan, A.M. Asiri, P. Yang, Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 6, 47–54 (2013)

    Article  Google Scholar 

  29. S.A. Khan, S.B. Khan, A.M. Asiri, Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. J. Mater. Sci. Mater. Electron. 27, 5294–5302 (2016)

    Article  Google Scholar 

  30. S.B. Khan, S.A. Khan, A.M. Asiri, A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Appl. Surf. Sci. 370, 445–451 (2016)

    Article  Google Scholar 

  31. S.A. Khan, S.B. Khan, A.M. Asiri, Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New J. Chem. 39, 5561–5569 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sher Bahadar Khan or M. I. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, A., Khan, S.B., Khan, M.I. et al. Cadmium oxide based efficient electrocatalyst for hydrogen peroxide sensing and water oxidation. J Mater Sci: Mater Electron 28, 1092–1100 (2017). https://doi.org/10.1007/s10854-016-5633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5633-8

Keywords

Navigation