Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications

  • 443 Accesses

  • 33 Citations

Abstract

In this study, biopolymer nanocomposites of cellulose acetate (CA) and Al2O3 nanoparticles (Al2O3 NPs) were successfully obtained using solution blending method. The effect of Al2O3 NPs loading on the microstructure, morphology, thermal and dielectric properties of CA/Al2O3 nanocomposites was investigated using FTIR, XRD, TGA, optical microscopy, SEM, AFM and impedance spectroscopy technique. The FTIR results infer good interaction between CA and Al2O3 NPs. The XRD and microscopic studies demonstrated that Al2O3 nanoparticles were homogeneously dispersed in the CA matrix. The TGA results indicate that the onset degradation temperature of CA/Al2O3 nanocomposites is shifted towards higher temperature in the presence of Al2O3 NPs. The contact angle measurements infer reduction in the wettability of CA matrix with increasing Al2O3 NPs loading. On the other hand, the dielectric properties of CA were improved due to an incorporation of Al2O3 NPs. The dielectric constant increases from 8.63 (50 Hz, 30 °C) for neat CA matrix to 27.57 (50 Hz, 30 °C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 loading. Similarly, the dielectric loss also increases from 0.26 (50 Hz, 30 °C) for neat CA matrix to 0.64 (50 Hz, 30 °C) for CA/Al2O3 nanocomposites with 25 wt% Al2O3 NPs loading. However, very low values of tan δ (below 1) were observed for all the samples. These results suggest that CA/Al2O3 nanocomposites with improved dielectric properties seem to be a promising candidate for designing electronic devices such as embedded passives.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    P.A. Wilbon, F. Chu, C. Tang, Macromol. Rapid Commun. 34, 8–37 (2013)

  2. 2.

    C.K. Williams, M.A. Hillmyer, Polym. Rev. 48, 1–10 (2008)

  3. 3.

    K.M. Nampoothiri, N.R. Nair, R.P. John, Bioresour. Technol. 101, 8493–8501 (2010)

  4. 4.

    L. Yu, S. Petinakis, K. Dean, A. Bilyk, D. Wu, Macromol. Symp. 249–250, 535–539 (2007)

  5. 5.

    H. Namazi, S. Jafarirad, J. Appl. Polym. Sci. 110, 4034–4039 (2008)

  6. 6.

    Y. Habibi, L.A. Lucia, O.J. Rojas, Chem. Rev. 110, 3479–3500 (2010)

  7. 7.

    Y. Nishiyama, P. Langan, M. Wada, V.T. Forsyth, Acta Crystallogr. D Biol. Crystallogr. 66, 1172–1177 (2010)

  8. 8.

    J.C. Jansen, R. Cassano, S. Trombino, A. Cilea, N. Picci, E. Drioli, L. Giorno, Cellulose 18, 359–370 (2011)

  9. 9.

    Z. Li, D. Zhang, J. Weng, B. Chen, H. Liu, Carbohydr. Polym. 99, 748–754 (2014)

  10. 10.

    S. Barkhordari, M. Yadollah, H. Namazi, J. Polym. Res. 21, 1–9 (2014)

  11. 11.

    L. Yan, K. Ishihara, J. Polym. Sci. A Polym. Chem. 46, 3306–3313 (2008)

  12. 12.

    C. Yan, J. Zhang, Y. Lv, J. Yu, J. Wu, J. Zhang, J. He, Biomacromolecules 10, 2013–2018 (2009)

  13. 13.

    V. Tserki, N.E. Zafeiropoulus, F. Simon, C. Panayiotou, Compos. A. Appl. Sci. Manuf. 36, 1110–1118 (2005)

  14. 14.

    K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton, D. Tindall, Prog. Polym. Sci. 26, 1605–1688 (2001)

  15. 15.

    A. Biswas, R.L. Shogren, J.L. Willet, Biomacromolecules 6, 1843–1845 (2005)

  16. 16.

    F.C. Kung, W.L. Chou, M.C. Yang, Polym. Adv. Technol. 17, 6–11 (2006)

  17. 17.

    N. Hoenich, Bioresources 1, 270–280 (2006)

  18. 18.

    M. Alexandre, P. Dubois, Mater. Sci. Eng. R Rep. 28, 1–63 (2000)

  19. 19.

    Y. Dong, D. Chaudhary, C. Ploumis, K.T. Lau, Compos. A Appl. Sci. Manuf. 42, 1483–1492 (2011)

  20. 20.

    J. E. Lemons, Aluminum oxide ceramics as biomaterials. In Materials Science Monographs, vol 17 (Elsevier Science Publisher, Ligano Sabbiadoro, 1983), pp.117–126

  21. 21.

    D. Mishra, S. Anand, R.K. Panda, R.P. Das, Mater. Lett. 42, 38–45 (2000)

  22. 22.

    A. Laachachi, M. Ferriol, M. Cochez, J.M. Lopez Cuesta, D. Ruch, Polym. Degrad. Stab. 94, 1373–1378 (2009)

  23. 23.

    Z. Guo, P. Tony, C. Oyoung, Y. Wang, H.T. Hahn, J. Mater. Chem. 16, 2800–2808 (2006)

  24. 24.

    M. Schinicro, S. Yoshio, Suharyanto, Y. Yamano, K. Shinichi, Vacuum 81, 762–765 (2007)

  25. 25.

    Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797–807 (2007)

  26. 26.

    J.K. Nelsen, Y. Hu, J. Phys. D Appl. Phys. 38, 213–222 (2005)

  27. 27.

    E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, T. Aytug, S. Sathyamurthy, K.L. More, J. Li, A. Goyal, Nanotechnology 18, 025703 (2007)

  28. 28.

    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Mater. Today 3, 1864–1873 (2016)

  29. 29.

    S.K.K. Pasha, K. Deshmukh, M.B. Ahamed, K. Chidambaram, M.K. Mohanapriya, N.A.N. Raj, Adv. Polym. Tech. (2015). doi:10.1002/adv.21616

  30. 30.

    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K. Chidambaram, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, Polym. Plast. Technol. Eng. 55, 1240–1253 (2016)

  31. 31.

    Q.M. Zhang, H. Li, M. Poh, C. Huang, Nature 419, 284–287 (2002)

  32. 32.

    Y. Zhang, Y. Wang, M. Li, J. Bai, ACS Appl. Mater. Phys. Interfaces 4, 65–68 (2012)

  33. 33.

    A.C. Balazs, T. Emrick, T.P. Russel, Science 314, 1107–1110 (2006)

  34. 34.

    A. Kafy, K.K. Sadasivuni, H.C. Kim, A. Akther, J. Kim, Phys. Chem. Chem. Phys. 17, 5923–5931 (2015)

  35. 35.

    R.B. Romero, C.A.P. Leite, M.D.C. Goncalves, Polymer 50, 161–170 (2009)

  36. 36.

    R. Abedini, S.M. Mousavi, R. Aminizadeh, Desalination 277, 40–45 (2011)

  37. 37.

    S. Anita, B. Brabu, D.J. Thiruvadigal, C. Gopalkrishnan, T.S. Natarajan, Carbohydr. Polym. 87, 1065–1072 (2012)

  38. 38.

    A.S. Figueiriedo, M.G. Sanchez-Loredo, A. Mauricio, M.F.C. Pereira, M. Minhalma, M.N. De Pinho, J. Appl. Polym. Sci. 132, 1–11 (2015)

  39. 39.

    M. Li, I.H. Kim, Y.G. Jeong, J. Appl. Polym. Sci. 118, 2475–2481 (2010)

  40. 40.

    L. Liu, Z. Shen, S. Liang, M. Yi, X. Zhang, S. Ma, J. Mater. Sci. 49, 321–328 (2014)

  41. 41.

    M.E. Uddin, R.K. Layek, H.K. Kim, N.H. Kim, D. Hui, J.H. Lee, Compos. B 90, 223–231 (2016)

  42. 42.

    J. Xu, C.P. Wong, in Proceedings of International Symposium on Advanced Packing Materials: Processes, Properties and Interfaces, (Atlanta, 2004), pp. 158–170

  43. 43.

    C. Zhang, R. Mason, G.C. Stevens, in Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, pp. 721–724 (2005)

  44. 44.

    P. Murugaraj, D. Mainwarning, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005)

  45. 45.

    S. Singha, M.J. Thomas, IEEE Trans. Compon. Packag. Technol. 33, 373–385 (2010)

  46. 46.

    H. Li, G. Liu, B. Liu, W. Chen, S. Chen, Mater. Lett. 61, 1507–1511 (2007)

  47. 47.

    S. Sathish, S.B. Chandar, N. Manivannan, Iran. Polym. J. 24, 63–74 (2015)

  48. 48.

    A. Mishra, M. Bajpai, J. Hazard. Mater. 118, 213–217 (2005)

  49. 49.

    M. Farahmanddjou, N. Golabiyan, J. Ceram. Process. Res. 16, 237–240 (2015)

  50. 50.

    H.S. Kim, N.K. Park, T.J. Lee, M.H. Um, M. Kang, Adv. Mater. Sci. Eng. 2012, 920105–920110 (2012)

  51. 51.

    J. Wang, H. Jiang, N. Jiang, Thermochim. Acta 496, 136–142 (2009)

  52. 52.

    G. Arthanareeswaran, P. Thanikairelan, K. Srinivasn, D. Mohan, M. Rajendran, Eur. Polym. J. 40, 2153–2159 (2004)

  53. 53.

    G.M. Raghavendra, T. Jayaramudu, K. Varaprasad, R. Sadiku, S.S. Ray, K.M. Raju, Carbohydr Polym. 93, 553–560 (2013)

  54. 54.

    B.K. Kim, Y.S. Oh, Y.M. Lee, L.K. Yoon, S. Lee, Polymer 41, 385–390 (2000)

  55. 55.

    S.M. Pawde, K. Deshmukh, Polym. Eng. Sci. 49, 808–818 (2009)

  56. 56.

    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)

  57. 57.

    J. Lu, K.-S. Moon, J. Xu, C.P. Wong, J. Mater. Chem. 16, 1543–1548 (2006)

  58. 58.

    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K.K. Pasha, A. Bhagat, R. Shirbhate, F. Telare, C. Lakhani, Polym. Plast. Technol. Eng. 55, 231–241 (2016)

  59. 59.

    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, S.K.K. Pasha, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 23, 159 (2016)

  60. 60.

    K.K. Sadasivuni, D. Ponnamma, B. Kumar, M. Strankowski, R. Cardinaels, P. Moldenaers, S. Thomas, Y. Grohens, Compos. Sci. Technol. 104, 18–25 (2014)

  61. 61.

    K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)

  62. 62.

    K. Deshmukh, M.B. Ahamed, A.R. Polu, K.K. Sadasivuni, S.K.K. Pasha, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, K. Chidambaram, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5267-x

  63. 63.

    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K. Pasha, Adv. Mater. Lett. (2016). doi:10.5185/amlett.2016.6555

  64. 64.

    F. He, S. Lau, H.L. Chen, J.T. Fan, Adv. Mater. 21, 710–715 (2009)

  65. 65.

    V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, J.F. Scott, G.L. Sharma, J. Mater. Sci. 48, 2151–2157 (2013)

  66. 66.

    L.Y. Xie, X.Y. Huang, C. Wu, P.K. Jiang, J. Mater. Chem. 21, 5897–5906 (2011)

  67. 67.

    M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K.K. Pasha, Int. J. Chem. Tech. Res. 5, 32–41 (2015)

  68. 68.

    S.M. Pawde, K. Deshmukh, J. Appl. Polym. Sci. 110, 2569–2578 (2008)

  69. 69.

    G. Sui, B. Li, G. Bratzel, L. Baker, W.H. Zhong, X.P. Yang, Soft Matter 5, 3593–3598 (2009)

Download references

Acknowledgments

One of the authors, Kalim Deshmukh would like to acknowledge the financial support from the management of B. S. Abdur Rahman University, Chennai - 600048, TN, India in terms of Junior Research Fellowship (JRF) to carry out this research work.

Author information

Correspondence to Kalim Deshmukh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, K., Ahamed, M.B., Deshmukh, R.R. et al. Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci: Mater Electron 28, 973–986 (2017). https://doi.org/10.1007/s10854-016-5616-9

Download citation

Keywords

  • Dielectric Constant
  • Contact Angle
  • Dielectric Property
  • Dielectric Loss
  • Cellulose Acetate