Optical and structural properties of Yb ion doped chlorophosphate glasses and glass–ceramics


In this work, after the synthesis of chlorophosphate-based host glasses doped with Yb ion as active ion, their optical properties such as absorption and emission spectra and thermal properties including transition and crystallization temperature were investigated. By using the DSC analysis indicating the temperatures 500 °C as Tg and 800 °C as Tc, the suitable annealing temperature was determined at 650 °C and then the annealing of the obtained glasses was done to convert them to glass–ceramics. During this heat treatment, NaCl and CaCl2 nanocrystals were grown in the glass matrix and active ions are trapped into this medium. Also, the structural features were analyzed using XRD and SEM and then the size of nanocrystals was obtained from Scherrer’s formula and was evaluated in average 37 nm for 1 %Yb:G–C and 54 nm for 0.5 %Yb:G–C samples. Finally, the absorption and emission spectra of the samples were recorded and analyzed, indicating that the conversion of glasses to glass–ceramics by heat treatment resulted in enhancement of emission intensity about 17 times; so, these glass–ceramics are applicable in frequency converters, solid state lasers and optical devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Y. Hatefi, N. Shahtahmasebi, A. Moghimi, E. Attaran, Ultraviolet to visible frequency-conversion properties of rare earths doped glass ceramics. J. Rare Earth 29, 484 (2011)

    Article  Google Scholar 

  2. 2.

    Y. Hatefi, N. Shahtahmasebi, A. Moghimi, E. Attaran, Frequency conversion properties of Eu3+ doped chlorophosphate glass ceramics containing CaCl2 nanocrystals. J. Lumin. 131, 114 (2011)

    Article  Google Scholar 

  3. 3.

    M.C. Gonçalves, F.S. Luis, M.A. Rui, Rare-earth-doped transparent glass ceramics. C. R. Chim. 5, 845 (2002)

    Article  Google Scholar 

  4. 4.

    M.J. Dejneka, The luminescence and structure of novel transparent oxyfluoride glass–ceramics. J. Non-Cryst. Solids 239, 149 (1998)

    Article  Google Scholar 

  5. 5.

    V. Lavin, I. Iparraguirre, J. Azkargorta, A. Mendioroz, J.P. Gonzalez, R. Balda, J. Fernandez, Stimulated and upconverted emissions of Nd3+ in a transparent oxyfluoride glass-ceramic. Opt. Mater. 25, 201 (2004)

    Article  Google Scholar 

  6. 6.

    A.S. Gouveia-Neto, E.B. Da Costa, L.A. Bueno, S.J.L. Ribeiro, Upconversion luminescence in transparent glass ceramics containing β-PbF2 nanocrystals doped with erbium. J. Alloys Compd. 375, 224 (2004)

    Article  Google Scholar 

  7. 7.

    J. Pisarska, W. Ryba-Romanowski, G. Dominiak-Dzik, T. Goryczka, W.A. Pisarski, Nd-doped oxyfluoroborate glasses and glassceramics for NIR laser applications. J. Alloys Compd. 451, 223 (2008)

    Article  Google Scholar 

  8. 8.

    D. Deng, S. Xu, S. Zhao, C. Li, H. Wang, H. Ju, Enhancement of upconversion luminescence in Tm3+/Er3+/Yb3+ -co doped glass ceramic containing LiYF4 nanocrystals. J. Lumin. 129, 1266 (2009)

    Article  Google Scholar 

  9. 9.

    G. Chen, X. Liu, Fabrication, characterization and sintering of glass-ceramics for low-temperature co-fired ceramic substrates. J. Mater. Sci. Mater. Electron. 15, 595 (2004)

    Article  Google Scholar 

  10. 10.

    Y.C. Ratnakaram, A.V. Reddy, R.P. Sreekanth, Chakradhar. Electronic absorption spectra and energy gap studies of Er3+ ions in different chlorophosphate glasses. Spectrochim. Acta A 58, 1809 (2002)

    Article  Google Scholar 

  11. 11.

    M.J. Weber, Science and technology of laser glass. J. Non-Cryst. Solids 123, 208 (1990)

    Article  Google Scholar 

  12. 12.

    F. Lahoz, I.R. Martϱn, U.R. Rodriguez-Mendoza, I. Iparraguirre, J. Azkargorta, A. Mendioroz, R. Balda, J. Fernandez, V. Lavin, Rare earths in nanocrystalline glass-ceramics. Opt. Mater. 27, 1762 (2005)

    Article  Google Scholar 

  13. 13.

    X. Qiao, X. Fan, M. Wang, Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals. Scr. Mater. 55, 211 (2006)

    Article  Google Scholar 

  14. 14.

    K.U. Kumar, P. Babu, K.H. Jang, H.J. Seo, C.K. Jayasankar, A.S. Joshi, Spectroscopic and 1.06 μm laser properties of Nd3+- doped K–Sr–Al phosphate and fluorophosphate glasses. J. Alloys Compd. 458, 509 (2008)

    Article  Google Scholar 

  15. 15.

    G.N.H. Kumar, J.L. Rao, K.R. Prasad, Y.C. Ratnakaram, Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5–Na2O–K2O glass. J. Alloys Compd. 480, 208 (2009)

    Article  Google Scholar 

  16. 16.

    M. Seshadri, K.V. Rao, J.L. Rao, Y.C. Ratnakaram, Spectroscopic and laser properties of Sm3+ -doped different phosphate glasses. J. Alloys Compd. 476, 263 (2009)

    Article  Google Scholar 

  17. 17.

    A.F. Jünior, D.J. Shanafield, J Mater Sci Mater. Electron. 16, 139 (2005)

    Article  Google Scholar 

  18. 18.

    E. Snitzer, R. Woodcock, J. Segre, Phosphate glass Er3+ laser. IEEE J. Quantum Electron. 4, 360 (1968)

    Article  Google Scholar 

  19. 19.

    V.B. Kravchenko, YuP Rudnitskii, Phosphate laser glasses. Sov. J. Quantum Electron. 9, 399 (1979)

    Article  Google Scholar 

  20. 20.

    L. Yan, C.H. Lee, Thermal effects in end-pumped Nd: phosphate glasses. J. Appl. Phys. 75, 1286 (1994)

    Article  Google Scholar 

  21. 21.

    B. Karmakar, K. Annapurna, Blue, green and red upconversions Ho2O3–doped fluorophosphate glasses. J. Non-Cryst. Solids 353, 1377 (2007)

    Article  Google Scholar 

  22. 22.

    G.V. Prakash, R. Jagannathan, Spectrochim. Acta A 55, 1799 (1999)

    Article  Google Scholar 

  23. 23.

    F. Weng, D. Chen, Y. Wang, Y. Yu, P. Huang, H. Lin, Energy transfer and up-conversion luminescence in Er3+/Yb3+ co-doped transparent glass ceramic containing YF3 nano-crystals. Ceram. Int. 35, 2619–2623 (2009)

    Article  Google Scholar 

  24. 24.

    V.K. Tikhomirov, V.D. Rodríguez, J. Méndez-Ramos, J. del-Castillo, D. Kirilenko, G. Van Tendeloo, V.V. Moshchalkov, Optimizing Er/Yb ratio and content in Er–Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence. Sol. Energy Mater. Sol. Cells 100, 209–215 (2012)

    Article  Google Scholar 

  25. 25.

    S. Moslemizadeh, M. Vaez-zadeh, H. Jamnezhad, UV-Blue Up-Conversion Phenomena in Nd3+ Doped CaCl2 Nano-Crystals. Chin.J. Phys. 51, 137–142 (2013)

    Google Scholar 

  26. 26.

    S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, J. Qiu, Enhanced cooperative quantum cutting in Tm3+ –Yb3+ co doped glass ceramics containing LaF3 nanocrystals. Opt. Express 16, 8990 (2008)

    Google Scholar 

  27. 27.

    F. Song, G. Zhang, X. Chen, M. Shang, Y. Feng, et al. Spectra characteristics of novel Er:Yb phosphate glass. in Proceedings of SPIE 3280, Rare-Earth-Doped Devices II, 46 (April 15, 1998)

  28. 28.

    C.T.M. Ribeiro, A.R. Zanatta, L.A.O. Nunes, Y. Messaddeq, M.A. Aegerter, Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses. J. Appl. Phys. 83, 2256–2260 (1998)

    Article  Google Scholar 

  29. 29.

    R. Lisiecki, E. Augustyn, W. Ryba-Romanowski, M. Zelechower, Er-doped and Er, Yb co-doped oxyfluoride glasses and glass–ceramics, structural and optical properties. Opt. Mater. 33, 1630–1637 (2011)

    Article  Google Scholar 

  30. 30.

    X. Meng, C. Han, F. Wu, J. Li, Er3+–Yb3+ co-doped TiO2 nanoparticles embedded in amorphous matrix with strong up-conversion emissions. J. Alloys. Compd. 536, 210–213 (2012)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yousef Hatefi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatefi, Y., Souri, D. & Beigpour, H. Optical and structural properties of Yb ion doped chlorophosphate glasses and glass–ceramics. J Mater Sci: Mater Electron 28, 939–943 (2017). https://doi.org/10.1007/s10854-016-5611-1

Download citation


  • Glass Matrix
  • Solid State Laser
  • Heat Treatment Temperature
  • Phosphate Glass
  • Glass Ceramic