Skip to main content
Log in

The effect of infrared plasmon on the performance of Si-based THz detectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Plasmons in metals have great impact on light emission, propagation, and detection in visible and infrared light wave frequencies. To explore plasmonic effect on the THz detection, both a backside-illuminated and a topside-illuminated blocking impurity band (BIB) THz detectors are developed and significant influence of plasmonic effect on the performance of BIB THz detectors is observed. The plasmonic effect in the heavily doped semiconductor layer of BIB THz detectors causes high reflectance of THz radiation which curtails the detection frequencies of the backside-illuminated BIB detectors. However, due to the advantages of flip-chip package and high quantum efficiency, the dark current, the responsivity, and the detectivity of the backside-illuminated detector shows superior characteristics to the topside-illuminated detector. The performance of the THz detector could be further improved with the suppression of the plasmonic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Shemelya, D.F. DeMeo, T.E. Vandervelde, Appl. Phys. Lett. 104(2), 021115 (2014)

    Article  Google Scholar 

  2. G. Kumar, S. Li, M.M. Jadidi, T.E. Murphy, New J. Phys. 15(8), 085031 (2013)

    Article  Google Scholar 

  3. M.X. Qiu, S.C. Ruan, H. Su, C.D. Wang, M. Zhang, R.L. Wang, H.W. Liang, Appl. Phys. Lett. 99(15), 151501 (2011)

    Article  Google Scholar 

  4. C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Nat. Photon. 8(8), 605–609 (2014)

    Article  Google Scholar 

  5. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan, Nat. Commun. 2, 579 (2011)

    Article  Google Scholar 

  6. S.C. Baker-Finch, K.R. McIntosh, D. Yan, K.C. Fong, T.C. Kho, J. Appl. Phys. 116(6), 063106 (2014)

    Article  Google Scholar 

  7. M. Rudiger, J. Greulich, A. Richter, M. Hermle, I.E.E.E. Trans, Electron Devices 60(7), 2156–2163 (2013)

    Article  Google Scholar 

  8. S.M. Harrel, R.L. Milot, J.M. Schleicher, C.A. Schmuttenmaer, J. Appl. Phys. 107(3), 033526 (2010)

    Article  Google Scholar 

  9. S. Vidal, J. Degert, M. Tondusson, J. Oberle, E. Freysz, Appl. Phys. Lett. 98(19), 191103 (2011)

    Article  Google Scholar 

  10. N.M. Haegel, S.A. Samperi, A.M. White, J. Appl. Phys. 93(2), 1305 (2003)

    Article  Google Scholar 

  11. M.D. Petroff, M.G. Stapelbroek, W.A. Kleinhans, Appl. Phys. Lett. 51(6), 406 (1987)

    Article  Google Scholar 

  12. F. Szmulowicz, F.L. Madarasz, J. Diller, J. Appl. Phys. 63(11), 5583 (1988)

    Article  Google Scholar 

  13. S.J. Tschanz, J.C. Garcia, N.M. Haegel, Solid State Electron. 51(7), 1062–1066 (2007)

    Article  Google Scholar 

  14. J.W. Beeman, S. Goyal, L.A. Reichertz, E.E. Haller, Infrared Phys. Technol. 51(1), 60–65 (2007)

    Article  Google Scholar 

  15. J.E. Huffman, A.G. Crouse, B.L. Halleck, T.V. Downes, T.L. Herter, J. Appl. Phys. 72(1), 273 (1992)

    Article  Google Scholar 

  16. K.S. Liao, N. Li, C. Wang, L. Li, Y.L. Jing, J. Wen, M.Y. Li, H. Wang, X.H. Zhou, Z.F. Li, W. Lu, Appl. Phys. Lett. 105(14), 143501 (2014)

    Article  Google Scholar 

  17. M. Shahzad, G. Medhi, R.E. Peale, W.R. Buchwald, J.W. Cleary, R. Soref, G.D. Boreman, O. Edwards, J. Appl. Phys. 110(12), 123105 (2011)

    Article  Google Scholar 

  18. J.C. Ginn, R.L. Jarecki, E.A. Shaner, P.S. Davids, J. Appl. Phys. 110(4), 043110 (2011)

    Article  Google Scholar 

  19. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.K. Yuan, V.M. Shalaev, Nature 466(7307), 735–738 (2010)

    Article  Google Scholar 

  20. J. Han, A. Lakhtakia, J. Mod. Optic. 56(4), 554–557 (2009)

    Article  Google Scholar 

  21. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Nat. Mater. 6(12), 946–950 (2007)

    Article  Google Scholar 

  22. H. Zhu, B.P. Zhang, M. Wang, G.J. Hu, N. Dai, H.Z. Wu, Acta Phys. Sin. 63(13), 136803 (2014)

    Google Scholar 

  23. C.F. Cai, S.Q. Jin, H.Z. Wu, B.P. Zhang, L. Hu, P.J. McCann, Appl. Phys. Lett. 100(18), 182104 (2012)

    Article  Google Scholar 

  24. F. Szmulowicz, F.L. Madarsz, J. Appl. Phys. 62(6), 2533–2540 (1987)

    Article  Google Scholar 

  25. S. Chaudhuri, Phys. Rev. B 26(12), 6593–6602 (1982)

    Article  Google Scholar 

  26. S.I. Woods, S.G. Kaplan, T.M. Jung, A.C. Carter, Appl. Opt. 50(24), 4824–4833 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 61290305 and 11374259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Xu, J., Zhu, J. et al. The effect of infrared plasmon on the performance of Si-based THz detectors. J Mater Sci: Mater Electron 28, 839–844 (2017). https://doi.org/10.1007/s10854-016-5598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5598-7

Keywords

Navigation