Skip to main content
Log in

Thermal stability and fire behavior of aluminum diethylphosphinate-epoxy resin nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The flame retardancy of 2, 2-bis(4-glycidyloxyphenyl)propane (DGEBA)-aluminum diethylphosphinate (AlPi) nanocomposites (EP-AlPi/(P − x), x = 1, 2, 3 %) was greatly enhanced by ultrasonic dispersion of nano-sized AlPi into epoxy resin. The UL 94 V-0 rating can be reached for EP-AlPi nanocomposites with a relatively low addition amount of AlPi (on the account of 8.4 wt% or phosphorus content of 2 wt%) as well as the LOI value over 37.2. The glass transition temperature (T g) enhanced properties were investigated by DTA, which showed that: T gs were about 5 °C higher than that of neat epoxy resin; T g increased along with content increasing of AlPi. Based on TGA results under a non-isothermal condition, the thermal degradation kinetics of EP-AlPi/(P − x) composites were studied by Kissinger’s, Ozawa’s, Flynn–Wall–Ozawa’s and Coast-Redfern’s methods, which suggested the conversion function f (α) = 1/2α −1 or f (α) = [−ln(1 − α)]−1 for EP-AlPi/(P − 1 %); f (α) = [−ln(1 − α)]−1 for EP-AlPi/(P − 2 %) and EP-AlPi/(P − 3 %) during the investigated process. The epoxy resin nanocomposites obtained in this study are green functional polymers and will become flame retardant potential candidates in electronic fields such as printed wiring boards with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Sun, Y. Yao, Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polym. Degrad. Stab. 96(10), 1720–1724 (2011)

    Article  Google Scholar 

  2. C.S. Wang, J.Y. Shieh, Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz < c, e > < 1, 2 > oxaphosphorin-6-yl) 1, 4-benzenediol. Polymer 39(23), 5819–5826 (1998)

    Article  Google Scholar 

  3. S.V. Levchik, E.D. Weil, Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym. Int. 53(12), 1901–1929 (2004)

    Article  Google Scholar 

  4. L.J. Qian, L.J. Ye, G.Z. Xu et al., The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 96(6), 1118–1124 (2011)

    Article  Google Scholar 

  5. J.Y. Shieh, C.S. Wang, Synthesis of novel flame retardant epoxy hardeners and properties of cured products. Polymer 42(18), 7617–7625 (2001)

    Article  Google Scholar 

  6. J. Gu, G. Zhang, S. Dong et al., Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 201(18), 7835–7841 (2007)

    Article  Google Scholar 

  7. J. Sun, X. Wang, D. Wu, Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics. ACS Appl. Mater. Interfaces 4(8), 4047–4061 (2012)

    Article  Google Scholar 

  8. B. Sood, M. Pecht, Conductive filament formation in printed circuit boards: effects of reflow conditions and flame retardants. J. Mater. Sci. Mater. Electron. 22(10), 1602–1615 (2011)

    Article  Google Scholar 

  9. P. Fisk, A. Girling, R. Wildey, Prioritisation of Flame Retardants for Environmental Risk Assessment (Environment Agency, Wallingford, 2003)

    Google Scholar 

  10. X. Li, Y. Ou, Y. Shi, Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate. Polym. Degrad. Stab. 77(3), 383–390 (2002)

    Article  Google Scholar 

  11. M. Iji, Y. Kiuchi, Flame resistant glass-epoxy printed wiring boards with no halogen or phosphorus compounds. J. Mater. Sci. Mater. Electron. 15(3), 175–182 (2004)

    Article  Google Scholar 

  12. J. Xu, J. Liu, K. Li, Application of functionalized graphene oxide in flame-retardant polypropylene. J. Vinyl Addit. Technol. 21(4), 278–284 (2015)

    Article  Google Scholar 

  13. M. Iji, Y. Kiuchi, Self-extinguishing epoxy molding compound with no flame-retarding additives for electronic components. J. Mater. Sci. Mater. Electron. 12(12), 715–723 (2001)

    Article  Google Scholar 

  14. X. Li, Y. Liu, C. Guo, H. Liu, G. Wang, Q. Cai, Y. Yao, Influence of layered aluminoborophosphate on flame retardance, crystallization behaviors and mechanical properties of polyamide 66 systems. Chem. Res. Chin. Univ. 32(1), 127–133 (2016)

    Article  Google Scholar 

  15. S.Y. Lu, I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 27(8), 1661–1712 (2002)

    Article  Google Scholar 

  16. J. Xu, X. Zhou, C. Ye et al., Thermal stability and mechanical property of polyvinyl chloride/intercalated hydrotalcite. J. Chin. Ceram. Soc. 41(4), 516–520 (2013)

    Google Scholar 

  17. B.I. Noh, S.B. Jung, Characteristics of environmental factor for electrochemical migration on printed circuit board. J. Mater. Sci. Mater. Electron. 19(10), 952–956 (2008)

    Article  Google Scholar 

  18. M. Wang, J. Xu, H. Wu et al., Effect of pentaerythritol and organic tin with calcium/zinc stearates on the stabilization of poly (vinyl chloride). Polym. Degrad. Stab. 91(9), 2101–2109 (2006)

    Article  Google Scholar 

  19. L. Xiao, D. Sun, T. Niu et al., Syntheses and characterization of two novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-based flame retardants for epoxy resin. High Perform. Polym. 26(1), 52–59 (2014)

    Article  Google Scholar 

  20. K. Ramachandran, W.J. Ready, P.M. Raj et al., Insulation reliability of fine-pitch through-vias in glass fiber reinforced halogen-free epoxy substrates. J. Mater. Sci. Mater. Electron. 25(4), 1687–1695 (2014)

    Article  Google Scholar 

  21. C.S. Wu, Y.L. Liu, Y.S. Chiu, Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43(15), 4277–4284 (2002)

    Article  Google Scholar 

  22. T. Ohki, Q.Q. Ni, N. Ohsako et al., Mechanical and shape memory behavior of composites with shape memory polymer. Compos. A Appl. Sci. Manuf. 35(9), 1065–1073 (2004)

    Article  Google Scholar 

  23. B.I. Noh, N.C. Park, W.S. Hong et al., Effect of underfill on bending fatigue behavior of chip scale package. J. Mater. Sci. Mater. Electron. 19(5), 406–410 (2008)

    Article  Google Scholar 

  24. J. Cerny, G. Vivant, U.S. Patent No. 4,188,313 (U.S. Patent and Trademark Office, Washington, DC), 12 Feb 1980

  25. J.S. Wang, Y. Liu, H.B. Zhao et al., Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym. Degrad. Stab. 94(4), 625–631 (2009)

    Article  Google Scholar 

  26. Z. Yang, C. Zhou, H. Yang et al., Improvement of the compatibilization of high-impact polystyrene/magnesium hydroxide composites with partially sulfonated polystyrene as macromolecular compatibilizers. Ind. Eng. Chem. Res. 51(27), 9204–9212 (2012)

    Article  Google Scholar 

  27. G.H. Hsiue, Y.L. Liu, J. Tsiao, Phosphorus-containing epoxy resins for flame retardancy V: synergistic effect of phosphorus-silicon on flame retardancy. J. Appl. Polym. Sci. 78(1), 1–7 (2000)

    Article  Google Scholar 

  28. C.L. Gan, U. Hashim, Evolutions of bonding wires used in semiconductor electronics: perspective over 25 years. J. Mater. Sci. Mater. Electron. 26(7), 4412–4424 (2015)

    Article  Google Scholar 

  29. T. Niu, D. Sun, Y. Yao, Study on synthesis and application of two phosphorus nitrogen flame retardants for epoxy resin. Plast. Sci. Technol. 41(4), 107–110 (2013)

    Google Scholar 

  30. L. Qian, L. Ye, Y. Qiu et al., Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer 52(24), 5486–5493 (2011)

    Article  Google Scholar 

  31. W.P.S. Saw, M. Mariatti, Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications. J. Mater. Sci. Mater. Electron. 23(4), 817–824 (2012)

    Article  Google Scholar 

  32. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  Google Scholar 

  33. T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38(11), 1881–1886 (1965)

    Article  Google Scholar 

  34. J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part C Polym. Lett. 4(5), 323–328 (1966)

    Article  Google Scholar 

  35. A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)

    Article  Google Scholar 

  36. S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo et al., ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590, 1–23 (2014)

    Article  Google Scholar 

  37. R.Z. Hu, S.L. Gao, F.Q. Zhao, Q.Z. Shi, T.L. Zhang, J.J. Zhang, The Foundation of Modern Chemisty Series Book 14: Thermal Analysis Kinetic (Science Press, Peking, 2008), pp. 54–176

    Google Scholar 

  38. K. Pielichowska, Thermooxidative degradation of polyoxymethylene homo-and copolymer nanocomposites with hydroxyapatite: kinetic and thermoanalytical study. Thermochim. Acta 600, 7–19 (2015)

    Article  Google Scholar 

  39. D. Yang, Y. Hu, H. Li, L. Song, H. Xu, B. Li, Synergistic flame retardant effect of α-zirconium phosphate in low-density polyethylene/ethylene-vinyl acetate/aluminum hydroxide hybrids. J. Therm. Anal. Calorim. 119(1), 619–624 (2015)

    Article  Google Scholar 

  40. J. Xu, Z. He, W. Wu et al., Study of thermal properties of flame retardant epoxy resin treated with hexakis [p-(hydroxymethyl) phenoxy] cyclotriphosphazene. J. Therm. Anal. Calorim. 114(3), 1341–1350 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Qiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Qiu, J. & Sakai, E. Thermal stability and fire behavior of aluminum diethylphosphinate-epoxy resin nanocomposites. J Mater Sci: Mater Electron 28, 18–27 (2017). https://doi.org/10.1007/s10854-016-5488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5488-z

Keywords

Navigation