Preparation and characterization of various morphologies of SrFe12O19 nano-structures: investigation of magnetization and coercivity

  • Kambiz Hedayati
  • Zahra Behesht-Ara
  • Davood Ghanbari


Hard magnetic SrFe12O19 (SrFe) nanostructures were synthesized by a facile chemical precipitation procedure. The influence of temperature, concentration and different capping agents on the particle size and morphology of the magnetic nanoparticles was investigated. The synthesized ferrites were characterized by X-ray diffraction pattern, scanning electron microscope, and Fourier transform infrared spectroscopy. Ferromagnetic property of the hexaferrite nanostructures was determined by vibrating sample magnetometer. The results show hard magnetic ferrite with a high coercivity about 2800–4000 Oe and saturation magnetization around 11–14 emu/g were synthesized.


Ferrite Saturation Magnetization Ultrasonic Irradiation High Coercivity SrFe12O19 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.B. Carter, M.G. Norton, Ceram Mater (Springer, New York, 2007)Google Scholar
  2. 2.
    L.G.J. Haart, G. Blasee, Solid State Ion. 16, 137–140 (1985)CrossRefGoogle Scholar
  3. 3.
    W.A. Kazamareck, B. Idikowski, K.H. Muller, J. Magn. Magn. Mater. 921, 177–181 (1998)Google Scholar
  4. 4.
    Z.B. Guo, W.P. Ding, W. Zhong, J.R. Zang, Y.W. Do, J. Magn. Magn. Mater. 175, 333–336 (1997)CrossRefGoogle Scholar
  5. 5.
    A. Ataie, S. Heshmati-Manesh, J. Eur. Ceram. Soc. 21, 1951–1955 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Sato, T. Umeda, J. Mater. Trans. 34, 76–81 (1993)CrossRefGoogle Scholar
  7. 7.
    K. Samikannu, J. Sinnappan, S. Mannarswamy, T. Cinnasamy, K. Thirunavukarasu, J. Mater. Sci. 2, 6 (2011)Google Scholar
  8. 8.
    G. Elvin, I.P.P. Parkin, Q.T. Bui, L. Fernandez Barquin, Q.A. Pankhurst, A.V. Komarov, Y.G. Morozov, J. Mater. Sci. Lett. 16, 1237 (1997)CrossRefGoogle Scholar
  9. 9.
    C. Surrig, K.A. Hempel, D. Bonnenberg, Appl. Phys. Lett. 63, 1836 (1993)CrossRefGoogle Scholar
  10. 10.
    R. Nawathey-Dikshit, S.R. Shinde, S.B. Ogale, Appl. Phys. Lett. 68, 3491 (1996)CrossRefGoogle Scholar
  11. 11.
    M. Kakihana, J. Sol-Gel. Sci. Technol. 6, 5 (1996)CrossRefGoogle Scholar
  12. 12.
    R. Carey, P.A. Gago-Sandocal, D.M. Newman, B.W.J. Thomas, J. Appl. Phys. 75, 6789 (1994)CrossRefGoogle Scholar
  13. 13.
    Q.Q. Fang, W. Zhong, Y.W. Du, Chin. Phys. Lett. 16, 285 (1999)CrossRefGoogle Scholar
  14. 14.
    V. Hlavacek, J.A. Puszynski, J. Ind. Eng. Chem. Res. 35, 349 (1996)CrossRefGoogle Scholar
  15. 15.
    M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171 (2000)CrossRefGoogle Scholar
  16. 16.
    H. Halakouie, G. Nabiyouni, J. Saffari, A. Ahmadi, D. Ghanbari, J. Mater. Sci. Mater. Electron. 27, 7738 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, M.R. Hosseini-Tabatabaei, A. Hassanabadi, J. Mater. Sci. Mater. Electron. 26, 9591 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Masoumi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. Mater. Electron. (2016). doi: 10.1007/s10854-016-5067-3 Google Scholar
  19. 19.
    G. Nabiyouni, A. Ahmadi, D. Ghanbari, H. Halakouie, J. Mater. Sci. Mater. Electron. 27, 4297 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Ghanbari, S. Sharifi, A. Naraghi, G. Nabiyouni, J. Mater. Sci. Mater. Electron. 27, 5315 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Shabani, G. Nabiyouni, J. Saffari, D. Ghanbari, J. Mater. Sci. Mater. Electron. 27, 8661 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kambiz Hedayati
    • 1
  • Zahra Behesht-Ara
    • 1
  • Davood Ghanbari
    • 2
  1. 1.Department of ScienceArak University of TechnologyArakIran
  2. 2.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations