Skip to main content
Log in

Facile fabrication of carbon spheres/n-Si junction diodes based on sucrose

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon spheres with diameters in the range 125 nm–10 μm were produced via hydrothermal carbonization of sucrose. Annealing at 800 °C under a flow of dry N2 gas increased the carbon content, reduced the sphere diameter making their shape more uniform, increased the crystallinity within the spheres and rendered them conducting. The band gap of the carbon spheres was found to be 2.82 eV and the conductivity was 0.15 S/cm at room temperature. A Schottky diode using these spheres was fabricated and electrically characterized. The ratio of the ON to the OFF current at ±1 V was ~20 and the turn-on voltage was ~0.6 V. Using the standard thermionic emission model of a Schottky junction, the diode ideality parameter was calculated to be ~2.4 and the barrier height was 0.52 eV. A simple circuit was designed to test the diode as a half wave rectifier with an input 100 Hz, 5 V peak-to-peak signal. The rectified output with an efficiency of 5.7 was tapped across a 22 kΩ load resistor. This is the first study demonstrating a real application using conducting carbon spheres fabricated via an easy, rapid, cheap, and green technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Iijima, J. Cryst. Growth 50, 675–683 (1980)

    Article  Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)

    Article  Google Scholar 

  3. S. Iijima, Nature 354, 56–58 (1991)

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2002)

    Article  Google Scholar 

  5. S.-K. Kim, E. Jung, M.D. Goodman, K.S. Schweizer, N. Tatsuda, K. Yano, P.V. Braun, A.C.S. Appl, Mater. Interfaces 7, 9128–9133 (2015)

    Article  Google Scholar 

  6. Y. Jiang, M. Huang, X. Ju, X. Meng, Chem. Lett. 45, 48–50 (2016)

    Article  Google Scholar 

  7. Q. Wang, H. Li, L. Chen, X. Huang, Carbon 39, 2211–2214 (2001)

    Article  Google Scholar 

  8. Q. Wang, H. Li, L. Chen, X.J. Huang, Solid State Ionics 43, 152–153 (2002)

    Google Scholar 

  9. M.-M. Titirici, A. Thomas, M. Antonietti, Adv. Funct. Mater. 17, 1010–1018 (2007)

    Article  Google Scholar 

  10. M.-M. Titirici, A. Thomas, M. Antonietti, J. Mater. Chem. 17, 3412–3418 (2007)

    Article  Google Scholar 

  11. Y. Mi, W. Hu, D. Youmeng, Y. Liu, Mater. Lett. 62, 1194–1196 (2008)

    Article  Google Scholar 

  12. S. Tang, Y. Tang, S. Vongehr, X. Zhao, X. Meng, Appl. Surf. Sci. 255, 6011–6016 (2009)

    Article  Google Scholar 

  13. M. Li, W. Li, S. Liu, Carbohydr. Res. 346, 999–1004 (2011)

    Article  Google Scholar 

  14. J. Cao, Y. Wang, P. Xiao, Y. Chen, Y. Zhou, J.-H. Ouyang, D. Jia, Carbon 56, 383–391 (2013)

    Article  Google Scholar 

  15. R.-R. Yao, D.-L. Zhao, L.-Z. Bai, N.-N. Yao, L. Xu, Nanoscale Res. Lett. 9, 368 (2014)

    Article  Google Scholar 

  16. M. Sevilla, A.B. Fuertes, Chem. Eur. J. 15, 4195–4203 (2009)

    Article  Google Scholar 

  17. A.R. Hidayu, N.F. Mohamad, S. Matali, A.S.A.K. Sharifa, Procedia Eng. 68, 379–384 (2013)

    Article  Google Scholar 

  18. J. Yao, G.X. Wang, J.-H. Ahn, H.K. Liu, S.X. Dou, J. Power Sources 114, 292–297 (2003)

    Article  Google Scholar 

  19. P.V. Kumar, N.M. Bardhan, S. Tongay, J. Wu, A.M. Belcher, J.C. Grossman, Nat. Chem. 6, 151–158 (2014)

    Article  Google Scholar 

  20. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Adv. Mater. 22, 505–509 (2010)

    Article  Google Scholar 

  21. S. Ibrahim, R. Ahmad, M.R. Johan, J. Lumin. 132, 147–152 (2011)

    Article  Google Scholar 

  22. A. Liu, I. Honma, M. Ichicara, H. Zhou, Nanotechnology 17, 2845–2849 (2006)

    Article  Google Scholar 

  23. T.C. Bond, Geophys. Res. Lett. 28, 4075–4078 (2001)

    Article  Google Scholar 

  24. L. Tian, D. Ghosh, W. Chen, S. Pradham, X. Chang, S. Chen, Chem. Mater. 21, 2803–2809 (2009)

    Article  Google Scholar 

  25. Q.-L. Chen, W.-Q. Ji, S. Chen, Sci. Rep. 6, 19382 (2015)

    Article  Google Scholar 

  26. K.B.K. Teo, A.C. Ferrari, G. Fanchini, S.E. Rodil, J. Yuan, J.T.H. Tsai, E. Laurenti, A. Tagliaferro, J. Roberson, Geophys. Res. Lett. 11, 1086–1090 (2002)

    Google Scholar 

  27. S. Stafstrom, J.L. Bredas, A.J. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, A.G. MacDiarmid, Phys. Rev. Lett. 59, 1464–1467 (1987)

    Article  Google Scholar 

  28. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 255

    Google Scholar 

  29. G. Horowitz, Adv. Mater. 2, 287–292 (1990)

    Article  Google Scholar 

  30. R.K. Gupta, R.A. Singh, J. Polym. Res. 11, 269–273 (2004)

    Article  Google Scholar 

  31. M. Saglam, M. Biber, M. Cakar, A. Turut, Appl. Surf. Sci. 230, 404–410 (2004)

    Article  Google Scholar 

  32. D.P. Halliday, J.W. Gray, P.N. Adams, A.P. Monkman, Synth. Metals 102, 877–878 (1999)

    Article  Google Scholar 

  33. C.A. Nijhuis, W.F. Reus, A.C. Siegel, G.M. Whitesides, J. Am. Chem. Soc. 133, 15397–15411 (2011)

    Article  Google Scholar 

  34. K.C. Morton, H. Tokuhisa, L.A. Baker, A.C.S. Appl, Mater. Interfaces 5, 10673–10681 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF under Grants NSF-DMR-1523463 (PREM) and DMR-RUI-1360772. The authors are grateful to Ezio Fasoli and Melvin De Jesús for access to FTIR instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idalia Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieves, C.A., Meléndez, A., Pinto, N.J. et al. Facile fabrication of carbon spheres/n-Si junction diodes based on sucrose. J Mater Sci: Mater Electron 27, 13044–13051 (2016). https://doi.org/10.1007/s10854-016-5445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5445-x

Keywords

Navigation