Skip to main content
Log in

Effects of ZrO2–ZnO on the sintering behavior and microwave dielectric properties of 0.65CaTiO3–0.35SmAlO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The 0.65CaTiO3–0.35SmAlO3 (CTSA) ceramics were synthesized by the conventional solid-state reaction technique. The effects of ZrO2–ZnO additives on the phase compositions, densification, sintering temperature and microwave dielectric properties were investigated. It has been found that a perovskite phase is the main phase and a second phase CaZrTi2O7 appeared as ZrO2 content increasing to 1 wt % in CTSA ceramics. The appropriate ZrO2 and ZnO additions could not only effectively lower the sintering temperature of CTSA ceramics to 1340 °C, but also promote the densification and microwave dielectric properties. But excessive additives deteriorated the microstructures and comprehensive properties of samples. Typically, excellent microwave dielectric properties: ε r  = 44.65, Q × f = 38,600 GHz (at 5.0 GHz) and τ f  = −8.36 ppm/°C were obtained for CTSA ceramics sintered at 1340 °C doped with 0.5 wt% ZrO2 and 1 wt% ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.Y. Yang, X.H. Wang, H.L. Gong, L.T. Li, Mater. Res. Bull. 50(2), 254 (2014)

    Article  Google Scholar 

  2. L. Fang, Z.H. Wei, C.X. Su et al., Ceram. Int. 40(10), 16835 (2014)

    Article  Google Scholar 

  3. A. Ioachim, M.G. Banciu, M.I. Toacsen, Appl. Surf. Sci. 253(1), 335 (2006)

    Article  Google Scholar 

  4. H.S. Zhu, Z.Y. Cui, C.Y. Shen, J. Mater. Sci. Mater. Electron. 27(1), 177 (2016)

    Article  Google Scholar 

  5. R. Laishram, O.P. Thakur, J. Mater. Sci. Mater. Electron. 24, 3504 (2013)

    Article  Google Scholar 

  6. Z.M. Dou, J. Jiang, G. Wang et al., Ceram. Int. 42(6), 6743 (2016)

    Article  Google Scholar 

  7. S.Y. Cho, I.T. Kim, K.S. Hong, J. Mater. Res. 14(1), 114 (1999)

    Article  Google Scholar 

  8. B. Jančar, D. Suvorov, M. Valant, J. Mater. Sci. Lett. 20(1), 71 (2001)

    Article  Google Scholar 

  9. G.A. Ravi, F. Azough, R. Freer, J. Eur. Ceram. Soc. 27(s 8–9), 2855 (2007)

    Article  Google Scholar 

  10. D. Suvorov, M. Valant, B. Jančar et al., Acta Chim. Slov. 48(1), 87 (2001)

    Google Scholar 

  11. X.Y. Yang, X.H. Wang, H.L. Gong et al., Mater. Res. Bull. 50(2), 254 (2014)

    Article  Google Scholar 

  12. X.L. Chen, H.F. Zhou, L. Fang et al., J. Alloy. Compd. 509(19), 5829 (2011)

    Article  Google Scholar 

  13. L.Z. Wang, L.X. Wang, Z.F. Wang et al., J. Mater. Sci. Mater. Electron. 26(11), 9026 (2015)

    Article  Google Scholar 

  14. X.J. Yang, S.H. Ding, X.B. Liu et al., Ceram. Int. 38S, S61 (2012)

    Google Scholar 

  15. W.T. Xie, H.Q. Zhou, H.K. Zhu et al., J. Mater. Sci. Mater. Electron. 26(6), 3515 (2015)

    Article  Google Scholar 

  16. C.L. Huang, M.H. Weng, C.C. Wu et al., Jpn. J. Appl. Phys. 40(2A), 698 (2001)

    Article  Google Scholar 

  17. D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloy. Compd. 475(s 1–2), 745 (2009)

    Article  Google Scholar 

  18. L.Z. Wang, L.X. Wang, Z.F. Wang et al., J. Mater. Sci. Mater. Electron. 27(4), 3929 (2016)

    Article  Google Scholar 

  19. W.T. Xie, H.Q. Zhou, Q.X. Jiang et al., J. Mater. Sci. Mater. Electron. 27(4), 3839 (2016)

    Article  Google Scholar 

  20. E.Z. Li, N. Niu, S.X. Duan et al., J. Mater. Sci. Mater. Electron. 27(4), 3164 (2016)

    Article  Google Scholar 

  21. N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26(26), 1755 (2006)

    Article  Google Scholar 

  22. J. Zhang, R.Z. Zuo. J. Mater. Sci. Mater. Electron. 26(11), 9222 (2015)

    Google Scholar 

  23. N.H. Nguyen, J.B. Lim, S. Nahm, J. Am. Ceram. Soc. 90(10), 3127 (2007)

    Article  Google Scholar 

  24. H. Wu, P.K. Davies, J. Am. Ceram. Soc. 89(7), 2250 (2006)

    Google Scholar 

  25. K.P. Surendran, M.T. Sebastian, P. Mohanan, A. Dias, Chem. Mater. 17(1), 142 (2005)

    Article  Google Scholar 

  26. C.L. Huang, C.S. Hsu, R.J. Lin, Mater. Res. Bull. 36(11), 1985 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of the fund by the Practice Innovation Program (2015) for University Graduate Students of Jiangsu Province (No. SJZZ15_0095), the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_15R35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Zhou, H., Sun, Q. et al. Effects of ZrO2–ZnO on the sintering behavior and microwave dielectric properties of 0.65CaTiO3–0.35SmAlO3 ceramics. J Mater Sci: Mater Electron 27, 12834–12839 (2016). https://doi.org/10.1007/s10854-016-5417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5417-1

Keywords

Navigation