Skip to main content
Log in

Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In graphene, band gap opening and tuning are important technological challenges for device applications. Various techniques have been suggested to this technologically complicated problem. Here, we present an ab initio study on the band gap opening in graphene through vacancy, adding impurity atom in the vacancy and substitutional co-doping. In the case of graphene with single vacancy a direct band gap of ~1 eV is obtained. This is a spin polarized state. The graphene system with two monovacancies gives rise to an effective indirect band gap (pseudo gap) of ~1 eV. The graphene substitutionally doped with B and N is co-doped (tri-doped) with S. This tri-doped graphene has turned into a semiconductor (band gap ~1 eV). These graphene semiconductors are better than the other semiconductor because of the presence of massless Dirac fermions in addition to normal electrons. This will have lot of application in device industry compared to a pristine graphene because of the presence of a gap and Dirac fermions. This type of band gap opening, with this type of defects and impurities, we are reporting for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mat. 6, 181–183 (2007)

    Article  Google Scholar 

  2. W. Ren, H.-M. Cheng, The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)

    Article  Google Scholar 

  3. Things you could do with graphene. Nat. Nanatechnol. 9, 737 (2014)

  4. K. Kostarelos, K.S. Novoselov, Graphene devices for life. Nat. Nanotechnol. 9, 744–745 (2014)

    Article  Google Scholar 

  5. E.J. Siochi, Graphene in the sky and beyond. Nat. Nanotechnol. 9, 745–747 (2014)

    Article  Google Scholar 

  6. E. De Ranieri, A memory for images. Nano Lett. 15, 259–265 (2015)

    Article  Google Scholar 

  7. Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G. de Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015)

    Article  Google Scholar 

  8. Ten years in two dimensions. Nat. Nanotechnol. 9, 725 (2014)

  9. F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403–073407 (2010)

    Article  Google Scholar 

  10. M. Dvorak, W. Oswald, Z. Wu, Band gap opening by patterning graphene. Sci. Rep. 3, 2289 (2013)

    Article  Google Scholar 

  11. A.A. Castellanos-Gomez, B.J. Van Wees, Band gap opening of graphene by noncovalent pi–pi interaction with porphyrins. Graphene 2, 102–108 (2013)

    Article  Google Scholar 

  12. S.M. Kozlov, F. Vines, A. Gorling, Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011)

    Article  Google Scholar 

  13. E.F. Sheka, The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int. J. Quantum Chem. 114, 1079–1095 (2014)

    Article  Google Scholar 

  14. M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6, 42–60 (2011)

    Article  Google Scholar 

  15. V.J. Surya, K. Iyakutti, H. Mizuseki, Y. Kawazoe, Tuning electronic structure of graphene: a first-principles study. IEEE Trans. Nanotechnol. 11, 534–541 (2012)

    Article  Google Scholar 

  16. B.-R. Wu, C.-K. Yang, Electronic structure of graphene with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)

    Article  Google Scholar 

  17. R. Faccio, L. Fernández-Werner, H. Pardo, C. Goyenola, O.N. Ventura, Á.W. Mombrú, Electronic and structural distortions in graphene induced by carbon vacancies and boron doping. J. Phys. Chem. C 114, 18961–18971 (2010)

    Article  Google Scholar 

  18. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  19. D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205–344217 (2009)

    Article  Google Scholar 

  20. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  Google Scholar 

  21. S.H. Cheng, K. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435–205440 (2010)

    Article  Google Scholar 

  22. R.M. Guzmán-Arellano, A.D. Hernández-Nieves, C.A. Balseiro, G. Usaj, Diffusion of fluorine adatoms on doped graphene, top of formbottom of form. Appl. Phys. Lett. 105, 121606 (2014)

    Article  Google Scholar 

  23. Y. Tang, Z. Yang, X. Dai, Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 135, 224704 (2011)

    Article  Google Scholar 

  24. R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure. arXiv:1104.1302v1 [cond-mat.mtrl-sci] (2011)

  25. S.H.M. Jafri et al., Conductivity engineering of graphene by defect formation. J. Phys. D Appl. Phys. 43, 045404 (2010)

    Article  Google Scholar 

  26. R. Faccio, A. W. Mombrú, Stability of multivacancies in graphene. arXiv:1312.5015v1[cond-mat.mtrl-sci] (2013)

  27. A.V. Krasheninnikov, R.M. Nieminen, Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theor. Chem. Acc. 129, 625–630 (2011)

    Article  Google Scholar 

  28. H. Amara, S. Latil, V. Meunier, Ph Lambin, J.C. Charlier, Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423-1–115423-10 (2007)

    Article  Google Scholar 

  29. Z. Hou, K. Terakura, Effect of nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015)

    Article  Google Scholar 

  30. M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (b, n, o and f)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)

    Article  Google Scholar 

  31. T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, Fluorinated monovacancies in graphene: even–odd effect. EPL 100, 37003 (2012)

    Article  Google Scholar 

  32. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)

    Article  Google Scholar 

  33. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010)

    Article  Google Scholar 

  34. V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801-1–036801-4 (2006)

    Google Scholar 

  35. M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008)

    Article  Google Scholar 

  36. G. Kresse, J. Hafner, Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  Google Scholar 

  37. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  38. K. Iyakutti, V.J. Surya, Y. Kawazoe, AIP Conf. Proc. 1447, 293–294 (2012)

    Article  Google Scholar 

  39. J.-S. Park, H.J. Choi, Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)

    Article  Google Scholar 

  40. T.T. Jia, M.M. Zheng, X.Y. Fan, Y. Su, S.-J. Li, H.-Y. Liu, G. Chen, Y. Kawazoe, Dirac cone move and bandgap on/off switching of graphene superlattice. Sci. Rep. 6, 18869 (2016). doi:10.1038/srep18869

    Article  Google Scholar 

  41. H.I. Sirikumara, E. Putz, M. Al-Abboodi, T. Jayasekera, Symmetry induced semimetalsemiconductor transition in doped graphene. Sci. Rep. 6, 19115 (2016). doi:10.1038/srep19115

    Article  Google Scholar 

  42. M. Dvorak, Z. Wu, Dirac point movement and topological phase transition in patterned graphene. Nanoscale 7, 3645 (2015)

    Article  Google Scholar 

  43. S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015)

    Article  Google Scholar 

  44. L. Li, S. Reich, J. Robertson, Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 84109 (2005)

    Google Scholar 

  45. K. Iyakutti, E. Mathan Kumar, I. Lakshmi, R. Thapa, R. Rajeswarapalanichamy, V.J. Surya, Y. Kawazoe, Effect of surface doping on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4083-z

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the help by the staff members of the Center for Computational Materials Science of the Institute for Materials Research, Tohoku University, in using SR16000 supercomputer. Author K.I is thankful to AOARD for the financial support through a project (AOARD-144007). R.T thanks SRM Research Institute, SRM University for providing supercomputing facility and financial support. One of the authors (Y.K.) thanks the Russian Megagrant Project No. 14.B25.31.0030 “New energy technologies and energy carriers” for supporting the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Iyakutti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyakutti, K., Mathan Kumar, E., Thapa, R. et al. Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study. J Mater Sci: Mater Electron 27, 12669–12679 (2016). https://doi.org/10.1007/s10854-016-5401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5401-9

Keywords

Navigation