Skip to main content
Log in

Optical and spectroscopic investigation of tunable size PbS nanocrystals embedded in insulating PVA matrix

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The thin film of Inorganic–Organic (Hybrid) nanocomposite (NCs) based on polyvinyl alcohol (PVA) and lead sulfide (PbS) have been synthesized using solution casting technique with different concentrations of PbS. The prepared films were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The XRD confirms the presence of PbS nanoparticle (NPs) in PVA matrix. The morphology and thickness of NCs films were characterized by transmission electron microscopy and scanning electron microscopy, respectively. The optical transmittance (typically 220 nm) and photoluminescence spectra of NCs films were investigated in the wavelength range 300–2400 and 200–800 nm, respectively. The band gap of PbS NPs varies from 0.9 to 1.58 eV by altering the concentration of PbS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Suresh Babu, C. Vijayanb, R. Devanathana, Mater. Lett. 58, 1223 (2004)

    Article  Google Scholar 

  2. S.A. Mcdonald, P.W. Cyr, L. Levina, E.H. Sargent, Appl. Phys. Lett. 85, 2089 (2004)

    Article  Google Scholar 

  3. S. Sarma, P. Datta, Nanosci. Nanotechnol. Lett. 4, 86 (2012)

    Article  Google Scholar 

  4. A.A.R. Watt, D. Blake, J.H. Warner, E.A. Thomesen, E.L. Tanvenner, H. Rubinsztein-Dunlop, P.J. Meredith, Appl. Phys. D Appl. Phys. 38, 2006 (2005)

    Article  Google Scholar 

  5. B. Liu, H. Li, C.H. Chew, W. Que, Y.L. Lam, C.H. Kam, L.M. Gan, G.Q. Xu, Mater. Lett. 51, 461 (2001)

    Article  Google Scholar 

  6. V.R. Lyakhovetsky, V.L. Volkov, A.A. Borshch, M.S. Brodyn, M.I. Strashnikova, V. Reznichenko, Mol. Cryst. Liq. Cryst. 426, 205 (2005)

    Article  Google Scholar 

  7. P.A. Kurian, C. Vijayan, S. Sandeep, Nanotechnology 18, 075708 (2007)

    Article  Google Scholar 

  8. T.K. Chaudhuri, A.J. Kothari, D. Tiwari, A. Ray, Phys. Stat. Solidi. 2, 356 (2013)

    Article  Google Scholar 

  9. C. Lu, C. Guan, Y. Liu, Y. Cheng, B. Yang, Chem. Matter. 17, 2448 (2005)

    Article  Google Scholar 

  10. J. Seo, S. Kim, W. Kim, R. Singh, M. Samoc, A. Cartwright, P. Prasad, Nanotechnology 20, 095202 (2009)

    Article  Google Scholar 

  11. Z. Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, M. Shi, F. Tan, Z. Wang, Curr. Appl. Phys. 9, 1175 (2009)

    Article  Google Scholar 

  12. P.I. Devi, K. Ramachandran, AIP Conf. Proc. 1276, 183 (2010)

    Article  Google Scholar 

  13. A. Guchhait, A.K. Rath, J. Pal, Sol. Energy Mater. Sol. Cells 95, 651 (2011)

    Article  Google Scholar 

  14. M. Zhou, B. Wang, X. Jiang, A.A. Zakhidov, J.P. Ferraris, D. Azunskis, L. Hanley, Int. J. Nanosci. 10, 521 (2011)

    Article  Google Scholar 

  15. S. Gallardo, M. Gutierrez, A. Henglein, E. Janata, Ber. Bunsen-Ges. Phys. Chem. 93, 1080 (1989)

    Article  Google Scholar 

  16. R. Kostic, M. Romcevic, D. Markovic, J. Kuljanin, M.I. Comor, Sci. Sint. 38, 191 (2006)

    Article  Google Scholar 

  17. V. Krishnakumar, G. Shanmugam, R. Nagalakshmi, J. Phys. D Appl. Phys. 45, 165102 (2012)

    Article  Google Scholar 

  18. S. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay, Phys. E. 40, 3121 (2008)

    Article  Google Scholar 

  19. S. Lu, H. Schmidt, Int. J. Appl. Ceram. Technol. 1, 119 (2004)

    Article  Google Scholar 

  20. K. Babu, C. Vijayan, P. Haridoss, Mater. Sci. Eng. C 27, 922 (2007)

    Article  Google Scholar 

  21. O.G. Abdullah, D.A. Tahir, K. Kadir, J Mater Sci Mater Electron 26, 6939 (2015)

    Article  Google Scholar 

  22. J.J.L. Hmar, T. Majumder, S.P. Mondal, Thin Sol. Film. 598, 243 (2016)

    Article  Google Scholar 

  23. L. Laura Beecroft, K. Christopher, Chem. Mater. 9, 1302 (1997)

    Article  Google Scholar 

  24. P. Nair, T. Radhakrishan, N. Revaprasadu, G. Kolawole, A. Luyt, V. Djokovic, Appl. Phys. A 81, 835 (2005)

    Article  Google Scholar 

  25. M.T. Nenadovic, M.I. Comor, V. Vasic, O.I. Micic, J. Phys. Chem. 94, 6390 (1990)

    Article  Google Scholar 

  26. Z. Zheng, S. Wang, S. Yang, Chem. Mater. 11, 3365 (1999)

    Article  Google Scholar 

  27. J.D. Patel, T.K. Chaudhuri, Mater. Res. Bull. 44, 1647 (2009)

    Article  Google Scholar 

  28. M.H. Patel, T.K. Chaudhuri, V.K. Patel, T. Shripathi, U. Deshpande, AIP Conf. Proc. 1728, 020106 (2016)

    Article  Google Scholar 

  29. Z. Qiao, Y. Xie, Y. Zhu, Y. Qian, J. Mater. Chem. 9, 1001 (1999)

    Article  Google Scholar 

  30. Z. Qiao, Y. Xie, M. Chen, J. Xu, Y. Zhu, Y. Qian, Chem. Phys. Lett. 321, 504 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the UGC-DAE Consortium for Scientific Research, Indore for funding under collaborative research Scheme (CSR-IC/CRS-92/2014-15/598). Thanks also to the Facilitation Centre for Industrial Plasma Technologies (FCIPT), Gandhinagar for helping in SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav K. Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.H., Chaudhuri, T.K., Shripathi, T. et al. Optical and spectroscopic investigation of tunable size PbS nanocrystals embedded in insulating PVA matrix. J Mater Sci: Mater Electron 27, 12627–12632 (2016). https://doi.org/10.1007/s10854-016-5395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5395-3

Keywords

Navigation