Skip to main content
Log in

Identification and characteristics of core–shell ZnO/ZnO:Mg nanorods synthesized by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study successfully synthesized the first core–shell ZnO/Mg doped ZnO (ZnO:Mg) nanorod arrays on p-silicon (100) substrates using the simple hydrothermal method. The vertically aligned synthesized ZnO nanorod arrays served as a template for the growth of 1.75 atomic% Mg doped ZnO. The morphological, structural, and optical features of the nanorod arrays were characterized using microscopic and spectroscopic techniques. The FESEM micrographs showed that diameter of the core is approximately 50 nm encapsulated by shell with thickness of about 30 nm. The low-resolution transmission electron microscopy images showed distinctive morphologies of the core and shell layers. Raman spectroscopy measurements provided structural evidence for the formation of a core–shell ZnO/ZnO:Mg nanorod arrays. The photoluminescence spectra of the core–shell ZnO/ZnO:Mg exhibited an intense sharp peak near-band-edge emission with splitting at 376 and 384 nm, with very weak and negligible defect emission at around 520 nm. Increase in the intensity ratio of the IUV/IVIS emission by three confirmed the relatively enhanced optical properties compared with that of core (ZnO) nanorod arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Miao, H. Zhang, Y. Zhu, Y. Yang, Q. Li, J. Li, Epitaxial growth of ZnO nanorods on electrospun ZnO nanofibers by hydrothermal method. J. Mater. Sci.: Mater. Electron. 23(10), 1887–1890 (2012)

    Google Scholar 

  2. S. Singh, G.R. Dillip, S. Vyas, et al., Fabrication and characterization of hydrothermally grown MgZnO nanorod films for Schottky diode applications. Microsyst. Technol. 10, 1–8 (2015)

    Google Scholar 

  3. J.J. Hassan, M.A. Mahdi, S.J. Kasim, N.M. Ahmed, H. Abu Hassan, Z. Hassan, High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector. Appl. Phys. Lett. 101(26), 2013–2016 (2012)

    Article  Google Scholar 

  4. J.J. Hassan, M.A. Mahdi, Y. Yusof et al., Fabrication of ZnO nanorod/p-GaN high-brightness UV LED by microwave-assisted chemical bath deposition with Zn(OH)2-PVA nanocomposites as seed layer. Opt. Mater. (Amst.) 35(5), 1035–1041 (2013)

    Article  Google Scholar 

  5. C.Y. Liu, H.Y. Xu, J.G. Ma et al., Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl. Phys. Lett. 99(6), 2012–2015 (2011)

    Google Scholar 

  6. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011)

    Article  Google Scholar 

  7. D.N. Montenegro, A. Souissi, C. Martínez-Tomás, V. Muñoz-Sanjosé, V. Sallet, Morphology transitions in ZnO nanorods grown by MOCVD. J. Cryst. Growth 359(1), 122–128 (2012)

    Article  Google Scholar 

  8. H.S. Al-Salman, M.J. Abdullah, RF sputtering enhanced the morphology and photoluminescence of multi-oriented ZnO nanostructure produced by chemical vapor deposition. J. Alloys Compd. 547, 132–137 (2013)

    Article  Google Scholar 

  9. M. Asghar, K. Mahmood, I.T. Ferguson et al., Investigation of VO–Zni native donor complex in MBE grown bulk ZnO. Semicond. Sci. Technol. 28(10), 105019 (2013)

    Article  Google Scholar 

  10. J.W. Lee, B.U. Ye, D.-Y. Kim et al., ZnO nanowire-based antireflective coatings with double-nanotextured surfaces. ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014)

    Article  Google Scholar 

  11. R. Shabannia, Vertically aligned ZnO nanorods on porous silicon substrates: effect of growth time. Prog. Nat. Sci. Mater. Int. 25(2), 95–100 (2015)

    Article  Google Scholar 

  12. F. Zhou, W. Jing, J. Shi, Z. Jiang, Y. Cheng, K. Gao, Effects of etching parameters on ZnO nanotubes evolved from hydrothermally synthesized ZnO nanorods. Ceram. Int. 42(4), 4788–4796 (2016)

    Article  Google Scholar 

  13. A. Di Mauro, M. Zimbone, M.E. Fragalà, G. Impellizzeri, Synthesis of ZnO nanofibers by the electrospinning process. Mater. Sci. Semicond. Process. 42, 8–11 (2015)

    Google Scholar 

  14. X. Wei, R. Zhao, M. Shao, X. Xu, J. Huang, Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate. Nanoscale Res. Lett. 8(1), 112 (2013)

    Article  Google Scholar 

  15. G. Yao, Y. Tang, Y. Fu et al., Fabrication of high-quality ZnCdO epilayers and ZnO/ZnCdO heterojunction on sapphire substrates by pulsed laser deposition. Appl. Surf. Sci. 326, 271–275 (2015)

    Article  Google Scholar 

  16. J.P. Mathew, G. Varghese, J. Mathew, Effect of doping concentration and annealing temperature on the structural and optical properties of Zn1−xCuxO films.  SOP Trans. Nano-Technol. 1(3), 1–11 (2014)

    Article  Google Scholar 

  17. N. Guo, Y.L. Wang, X.Q. Wei, Y.X. Yu, M. Ding, X.J. Xu, Effects of Mg-contents and substrate parameters on structure and optical properties of Mg-doped ZnO nanorods fabricated by hydrothermal method. J. Mater. Sci.: Mater. Electron. 36, 1–8 (2016)

    Google Scholar 

  18. M.H. Habibi, E. Askari, Fabrication and spectral properties of zinc zirconate nanorod composites by sol–gel method for optical applications: effect of chloride and oxychloride precursors and sintering temperature on band gap. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45(2), 281–285 (2015)

    Article  Google Scholar 

  19. Y. Zhang, B. Zhang, Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes. Phys. Chem. Chem. Phys. 17(21), 13813–13820 (2015)

    Article  Google Scholar 

  20. G.P. Li, R. Chen, D.L. Guo et al., Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission. Nanoscale 3(8), 3170–3177 (2011)

    Article  Google Scholar 

  21. K.S. Babu, A.R. Reddy, K.V. Reddy, Green emission from ZnO–MgO nanocomposite due to Mg diffusion at the interface. J. Lumin. 158, 306–312 (2015)

    Article  Google Scholar 

  22. P. Shimpi, Y. Ding, E. Suarez, J. Ayers, P.X. Gao, Annealing induced nanostructure and photoluminescence property evolution in solution-processed Mg-alloyed ZnO nanowires. Appl. Phys. Lett. 97(10), 3–5 (2010)

    Article  Google Scholar 

  23. M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B Condens. Matter 485, 6–13 (2016)

    Article  Google Scholar 

  24. X. Fang, X. Wang, D. Zhao et al., Electroluminescence of ZnO nanorods/ZnMgO films/p-SiC structure heterojunction LED. Phys. E Low-dimens. Syst. Nanostruct. 59, 93–97 (2014)

    Article  Google Scholar 

  25. J. Ji, W. Zhang, H. Zhang et al., High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting. J. Mater. Sci.: Mater. Electron. 24(9), 3474–3480 (2013)

    Google Scholar 

  26. Z. Zhang, Y. Hu, F. Qin, Y. Ding, DC sputtering assisted nano-branched core–shell TiO2/ZnO electrodes for application in dye-sensitized solar cells. Appl. Surf. Sci. 376, 10–15 (2016)

    Article  Google Scholar 

  27. A. Rivera, A. Mazady, M. Anwar, Co-axial core–shell ZnMgO/ZnO NWs. Solid State Electron. 104, 126–130 (2015)

    Article  Google Scholar 

  28. G. Grinblat, F. Bern, J. Barzola-Quiquia, M. Tirado, D. Comedi, P. Esquinazi, Luminescence and electrical properties of single ZnO/MgO core/shell nanowires. Appl. Phys. Lett. 104(10), 1–6 (2014)

    Article  Google Scholar 

  29. J.G. Song, J. Park, J. Yoon et al., Plasma enhanced atomic layer deposition of magnesium oxide as a passivation layer for enhanced photoluminescence of ZnO nanowires. J. Lumin. 145, 307–311 (2014)

    Article  Google Scholar 

  30. W. Liu, Y. Liang, H. Xu et al., Heteroepitaxial growth and spatially resolved cathodoluminescence of ZnO/MgZnO coaxial nanorod arrays. J. Phys. Chem. C 114, 16148–16152 (2010)

    Article  Google Scholar 

  31. A.M. Selman, Z. Hassan, M. Husham, Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values. Measurement 56, 155–162 (2014)

    Article  Google Scholar 

  32. J.J. Hassan, Z. Hassan, H. Abu-Hassan, High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVA complex seed layer on Si substrates. J. Alloys Compd. 509(23), 6711–6719 (2011)

    Article  Google Scholar 

  33. D. Polsongkram, P. Chamninok, S. Pukird et al., Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B Condens. Matter 403, 3713–3717 (2008)

    Article  Google Scholar 

  34. J. Yang, Y. Wang, J. Kong, M. Yu, H. Jin, Synthesis of Mg-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties. J. Alloys Compd. 657, 261–267 (2016)

    Article  Google Scholar 

  35. X.Q. Meng, H. Peng, Y.Q. Gai, J. Li, Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires. J. Phys. Chem. C 114(3), 1467–1471 (2010)

    Article  Google Scholar 

  36. K.V.A. Renitta, Enhanced H2 sensing performance presented by Mg doped ZnO films fabricated with a novel ITO seed layer. J. Mater. Sci.: Mater. Electron. 26, 3458–3465 (2015)

    Google Scholar 

  37. P. Shimpi, P.-X. Gao, D.G. Goberman, Y. Ding, Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Nanotechnology 20, 125608 (2009)

    Article  Google Scholar 

  38. S. Sharma, C. Periasamy, A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique. Superlattices Microstruct. 73, 12–21 (2014)

    Article  Google Scholar 

  39. H. Benzarouk, A. Drici, M. Mekhnache et al., Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP). Superlattices Microstruct. 52(3), 594–604 (2012)

    Article  Google Scholar 

  40. S. Wei, J. Lian, H. Wu, Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method. Mater. Charact. 61(11), 1239–1244 (2010)

    Article  Google Scholar 

  41. R. Shabannia, H.A. Hassan, Growth and characterization of aligned ZnO nanorods synthesized on porous silicon. Mater. Lett. 98, 135–137 (2013)

    Article  Google Scholar 

  42. N. Guo, X.Q. Wei, R.R. Zhao, X.J. Xu, Preparation and optical properties of Mg-doped ZnO nanorods. Appl. Surf. Sci. 317, 400–404 (2014)

    Article  Google Scholar 

  43. H. Chen, J. Ding, W. Guo, F. Shi, Y. Li, Violet-blue-green emission and shift in Mg-doped ZnO films with different ratios of oxygen to argon gas flow. Appl. Surf. Sci. 258(24), 9913–9917 (2012)

    Article  Google Scholar 

  44. P. Kumar, H.K. Malik, A. Ghosh, R. Thangavel, K. Asokan, Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films. Appl. Phys. Lett. 102, 8–13 (2013)

    Google Scholar 

  45. S. Sharma, R. Vyas, N. Sharma et al., Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies. J. Alloys Compd. 552, 208–212 (2013)

    Article  Google Scholar 

  46. R.T. Ginting, C.C. Yap, M. Yahaya, M.M. Salleh, Improvement of inverted type organic solar cells performance by incorporating Mg dopant into hydrothermally grown ZnO nanorod arrays. J. Alloys Compd. 585, 696–702 (2014)

    Article  Google Scholar 

  47. K. Vijayalakshmi, A. Renitta, K. Karthick, Growth of high quality ZnO: Mg films on ITO coated glass substrates for enhanced H2 sensing (spray). Ceram. Int. 40(4), 6171–6177 (2014)

    Article  Google Scholar 

  48. R. Shabannia, H. Abu-Hassan, Vertically aligned ZnO nanorods synthesized using chemical bath deposition method on seed-layer ZnO/polyethylene naphthalate (PEN) substrates. Mater. Lett. 90, 156–158 (2013)

    Article  Google Scholar 

  49. R. Shabannia, H.A. Hassan, Growth and characterization of vertically aligned ZnO nanorods grown on porous silicon: effect of precursor concentration. Superlattices Microstruct. 62, 242–250 (2013)

    Article  Google Scholar 

  50. J.H. Gu, L. Long, Z. Lu, Z.Y. Zhong, Optical, electrical and structural properties of aluminum-doped nano-zinc oxide thin films deposited by magnetron sputtering. J. Mater. Sci.: Mater. Electron. 26(2), 734–741 (2014)

    Google Scholar 

  51. O.F. Farhat, M.M. Halim, M.J. Abdullah, M.K.M. Ali, N.K. Allam, Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates. Beilstein J. Nanotechnol. 6, 720–725 (2015)

    Article  Google Scholar 

  52. Y. Wang, X. Zhao, L. Duan et al., Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Mater. Sci. Semicond. Process. 29, 372–379 (2015)

    Article  Google Scholar 

  53. Y. Li, C. Wan, C. Chang, Y. Huang, W. Tsai, Annealing effect on the photoluminescence characteristics of ZnO-nanowires and the improved optoelectronic characteristics of p-NiO/n-ZnO nanowire UV detectors. Jpn. J. Appl. Phys. 54(6S1), 06FG05 (2015)

    Article  Google Scholar 

  54. S.D. Senol, O. Ozturk, C. Terzioğlu, Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method 384 nm. Ceram. Int. 41(9), 11194–11201 (2015)

    Article  Google Scholar 

  55. K. Huang, Z. Tang, L. Zhang et al., Preparation and characterization of Mg-doped ZnO thin films by sol–gel method (384 nm). Appl. Surf. Sci. 258(8), 3710–3713 (2012)

    Article  Google Scholar 

  56. W. Zeng, X. Yang, M. Shang, X. Xu, W. Yang, H. Hou, Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps. Ceram. Int. 42(8), 10021–10029 (2016)

    Article  Google Scholar 

  57. R. Yousefi, F.J. Sheini, M.R. Muhamad, M.A. More, Characterization and field emission properties of ZnMgO nanowires fabricated by thermal evaporation process. Solid State Sci. 12(7), 1088–1093 (2010)

    Article  Google Scholar 

  58. P. Kumar, A. Singh, D. Pathak, L. Hromadko, T. Wagner, Structural and optical properties of sol–gel processed ZnCdMgO nanostructured films as transparent conductor. Adv. Mater. Lett. 5(10), 587–592 (2014)

    Article  Google Scholar 

  59. K. Karthick, K. Vijayalakshmi, Influence of Mg doping on the properties of ZnO films prepared on c-cut sapphire by sputtering. Superlattices Microstruct. 67, 172–180 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Universiti Sains Malaysia under RU Top-Down Grant (1001/CINOR/870019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrook A. Azzez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzez, S.A., Hassan, Z. & Hassan, J.J. Identification and characteristics of core–shell ZnO/ZnO:Mg nanorods synthesized by hydrothermal method. J Mater Sci: Mater Electron 27, 12618–12626 (2016). https://doi.org/10.1007/s10854-016-5394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5394-4

Keywords

Navigation