Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12112–12118 | Cite as

The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites

  • Rebar T. Abdulwahid
  • Omed Gh. Abdullah
  • Shujahadeen B. Aziz
  • Sarkawt A. Hussein
  • Fahmi F. MuhammadEmail author
  • Mohd Y. Yahya


In this work the structural and optical properties of PVA:PbO2 based solid polymer nanocomposites was investigated. The XRD results indicated the existence of both α and β phases of PbO2 distributed along the PVA matrix. The crystallite size of PbO2 particles was found to be in the nanoscale range (≈19 nm). A pronounced red shift in the absorption spectra and decreased energy gap of the nanocomposite films were observed upon the addition of various fractions of PbO2. These indicated an enhancement in the intermolecular interaction between the PVA host and PbO2 dopant. The plot of refractive index versus dopant fraction was successfully fitted to an empirical equation and a parabolic correlation was found between them, by which a homogeneous distribution of the PbO2 nanoparticles has been confirmed. The proposed Wemple–DiDomenico model in describing the optical band gap was seen to be inconsistent, implying that the PVA:PbO2 nanocomposite films does not obey this model. Consequently, a detailed elaboration on the optical and structural behaviours of the PVA:PbO2 system was given.


PbO2 Single Oscillator Model PbO2 Nanoparticles Dopant Fraction Refractive Index Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the University of Sulaimani is gratefully acknowledged. The authors also gratefully acknowledge the Department of Physics, University of Koya for the lab facilities provided to support this work.


  1. 1.
    Y.A. Badr, K.M.A. El-Kader, R.M. Khafagy, Raman spectroscopy study of CdS, PVA composite films. J. Appl. Polym. Sci. 92, 1984–1992 (2004)CrossRefGoogle Scholar
  2. 2.
    K.M.A. El-Kader, A.S. Orabi, Spectroscopic behavior of poly(vinyl alcohol) films with different molecular weights. Polym. Test. 21, 591–595 (2002)CrossRefGoogle Scholar
  3. 3.
    F. El-Tantawy, K.M. Abdel-Kader, F. Kaneko, Y.K. Sung, Physical properties of CdS-poly (vinyl alcohol) nanoconducting composite synthesized by organosol techniques and novel application potential. Eur. Polym. J. 40, 415–430 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Krumova, D. Lopez, R. Benavente, C. Mijangos, J.M. Perena, Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41, 9265–9272 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Suzuki, T. Yoshida, T. Koyama, S. Kobayashi, M. Kimura, K. Hanabusa, H. Shirai, Ionic conduction in partially phosphorylated poly(vinyl alcohol) as polymer electrolytes. Polymer 41, 4531–4536 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater. 2013 (2013). Article ID 897043Google Scholar
  7. 7.
    F.H.A. El-Kader, N.A. Hakeem, I.S. Elashmawi, A.M. Ismail, Structural, optical and thermal characterization of ZnO nanoparticles doped in PEO/PVA blend films. Aust. J. Basic Appl. Sci. 7, 608–619 (2013)Google Scholar
  8. 8.
    T. Tunc, S. Altindal, I. Dokme, H. Uslu, Anomalous peak in the forward-bias C–V plot and temperature-dependent behavior of Au/PVA (Ni, Zn-doped)/n-Si(111) structures. J. Electron. Mater. 40, 157–164 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Sriram, R. Chandiramouli, P. Gopinath, First-principle studies on electronic properties of PbO structures. Asian J. Appl. Sci. 7, 774–779 (2014)CrossRefGoogle Scholar
  10. 10.
    J.P. Carr, N.A. Hampson, The lead dioxide electrode. Chem. Rev. 72, 679–702 (1972)CrossRefGoogle Scholar
  11. 11.
    R. Yousefi, A. Khorsand Zak, F. Jamali-Sheini, N.M. Huang, W.J. Basirun, M. Sookhakian, Synthesis and characterization of single crystal PbO nanoparticles in a gelatin medium. Ceram. Int. 40, 11699–11703 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Chahadih, H. El Hamzaoui, R. Bernard, L. Boussekey, L. Bois, O. Cristini, M. Le Parquier, B. Capoen, M. Bouazaoui, Direct-writing of PbS nanoparticles inside transparent porous silica monoliths using pulsed femtosecond laser irradiation. Nanoscale Res. Lett. 6, 542 (2011)CrossRefGoogle Scholar
  13. 13.
    H.U. Gang, X.U. Rui-dong, H.E. Shi-wei, C.H.E.N. Bu-ming, Y.A.N.G. Hai-tao, Y.U. Bo-hao, L.I.U. Qiang, Electrosynthesis of Al/Pb/α-PbO2 composite inert anode materials. Trans. Nonferrous Met. Soc. China 25, 2095–2102 (2015)CrossRefGoogle Scholar
  14. 14.
    O. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci.: Mater. Electron. 26, 5303–5309 (2015)Google Scholar
  15. 15.
    S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci.: Mater. Electron. 26, 8022–8028 (2015)Google Scholar
  16. 16.
    F.F. Muhammad, S.B. Aziz, S.A. Hussein, Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. J. Mater. Sci.: Mater. Electron. 26, 521–529 (2014)Google Scholar
  17. 17.
    O. Abdullah, D.A. Tahir, K. Kadir, Optical and structural investigation of synthesized PVA/PbS nanocomposites. J. Mater. Sci.: Mater. Electron. 26, 6939–6944 (2015)Google Scholar
  18. 18.
    H.N. Chandrakala, B. Ramaraj, M. Shivakumaraiah, G. Siddaramaiah, Optical properties and structural characteristics of zinc oxide-cerium oxide doped polyvinyl alcohol films. J. Alloys Compd. 586, 333–342 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Bulinski, V. Kuncser, C. Plapcianu, S. Krautwald, H. Franke, P. Rotaru, G. Filoti, Optical and electronic properties of polyvinyl alcohol doped with pairs of mixed valence metal ions. J. Phys. D Appl. Phys. 37, 2437–2441 (2004)CrossRefGoogle Scholar
  20. 20.
    T.A. Hamdalla, T.A. Hanafy, Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification. Optik 127, 878–882 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Wang, Z. Chen, P. Fang, S. Wang, Synthesis, characterization and optical properties of hybridized CdS–PVA nanocomposites. Mater. Chem. Phys. 106, 443–446 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Sarma, P. Datta, Characteristics of poly(vinyl alcohol)/lead sulphide quantum dot device. Nanosci. Nanotechnol. Lett. 2, 261–265 (2010)CrossRefGoogle Scholar
  23. 23.
    B.A.Z.I.Z. Shujahadeen, Modifying poly(vinyl alcohol) (PVA) from insulator to SmallBandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45, 736–745 (2016)CrossRefGoogle Scholar
  24. 24.
    R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, γ-Irradiated PVA/Ag nanocomposite films: materials for optical applications. J. Alloys Compd. 538, 212–219 (2012)CrossRefGoogle Scholar
  25. 25.
    Q. Daia, J. Zhoua, X. Mengb, D. Fengc, C. Wua, J. Chen, Electrochemical oxidation of cinnamic acid with Mo modified PbO2 electrode: electrode characterization, kinetics and degradation pathway. Chem. Eng. J. 289, 239–246 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Jin, F. Wang, X. Mai, Y. Hun, W. Fang, Y. Wei, C. Zhu, Preparation and characterization of Ce and PVP co-doped PbO2 electrode for waste water treatment. J. Taiwan Inst. Chem. Eng. 51, 135–142 (2015)CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, X. Guo, X. Cao, D. Wang, J. Wei, Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol. Chin. J. Catal. 36, 975–981 (2015)CrossRefGoogle Scholar
  28. 28.
    Z. Chen, Q. Yu, D.-H. Liao, Z.-C. Guo, J. Wu, Influence of nano-CeO2 on coating structure and properties of electrodeposited Al/α-PbO2/β-PbO2. Trans. Nonferrous Met. Soc. China 23, 1382–1389 (2013)CrossRefGoogle Scholar
  29. 29.
    S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater. Sci.: Mater. Electron. 27, 4163–4171 (2016)Google Scholar
  30. 30.
    S.F. Bdewi, O. Abdullah, B.K. Aziz, A.A.R. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym. Mater. 26(2), 326–334 (2016)CrossRefGoogle Scholar
  31. 31.
    C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater. Lett. 56, 167–174 (2002)CrossRefGoogle Scholar
  32. 32.
    M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)Google Scholar
  33. 33.
    F.F. Muhammad, K. Sulaiman, Utilizing a simple and reliable method to investigate the optical functions of small molecular organic films: Alq3 and Gaq3 as examples. Meas. J. Int. Meas. Confed. 44, 1468–1474 (2011)CrossRefGoogle Scholar
  34. 34.
    F. Yakuphanoglu, G. Barim, I. Erol, The effect of FeCl3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films. Phys. B: Condens. Matter 391, 136–140 (2007)CrossRefGoogle Scholar
  35. 35.
    P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21, 18623–18629 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran. Polym. J. 22, 767–774 (2013)CrossRefGoogle Scholar
  37. 37.
    Y.Q. Rao, S. Chen, Molecular composites comprising TiO2 and their optical properties. Macromolecules 41, 4838–4844 (2008)CrossRefGoogle Scholar
  38. 38.
    J. Tauc, Amorphous and Liquid Semiconductors, 1st edn. (Plenum Publishing Company Ltd, London, 1974)Google Scholar
  39. 39.
    P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Structural, electrical and optical characterization of pure and doped poly (vinyl alcohol) (PVA) polymer electrolyte films. Int. J. Polym. Mater. 56, 579–591 (2007)CrossRefGoogle Scholar
  40. 40.
    J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, P.K. Sharma, Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater. Chem. Phys. 134, 1121–1126 (2012)CrossRefGoogle Scholar
  41. 41.
    I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139, 802–810 (2013)CrossRefGoogle Scholar
  42. 42.
    S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)CrossRefGoogle Scholar
  43. 43.
    A.H. Ammar, Studies on some structural and optical properties of ZnxCd1−xTe thin films. Appl. Surf. Sci. 201, 9–19 (2002)CrossRefGoogle Scholar
  44. 44.
    A. Benchaabane, Z.B. Hamed, F. Kouki, M.A. Sanhoury, K. Zellama, A. Zeinert, H. Bouchriha, Performances of effective medium model in interpreting optical properties of polyvinylcarbazole:ZnSe nanocomposites. J. Appl. Phys. 115, 134313 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rebar T. Abdulwahid
    • 1
  • Omed Gh. Abdullah
    • 2
  • Shujahadeen B. Aziz
    • 2
  • Sarkawt A. Hussein
    • 2
  • Fahmi F. Muhammad
    • 3
    • 4
    • 5
    Email author
  • Mohd Y. Yahya
    • 3
  1. 1.Department of Physics, Faculty of Science and Science Education, School of Science EducationUniversity of SulaimaniSulaimaniIraq
  2. 2.Advanced Polymeric Materials Research Lab., Department of Physics, Faculty of Science and Science Education, School of ScienceUniversity of SulaimaniSulaimaniIraq
  3. 3.Center for Composites, Institute for Vehicle Systems and Engineering, Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  4. 4.Soft Materials and Devices Lab, Department of Physics, Faculty of Science and HealthKoya UniversityKoyaIraq
  5. 5.Development Centre for Research and Training (DCRT)University of Human DevelopmentSulaimaniIraq

Personalised recommendations