Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites

Abstract

Ferroelectric (FE), ferromagnetic (FM), and multiferroic phases are low-temperature lattice-deformed or/and spin-ordering phase through structural phase transition. Here, relaxor-FE and parasitic FM structural phase transitions with both ordering temperatures above 180 °C were observed in the A(Zn1/2Ti1/2)O3-modified BiFeO3–SrTiO3 (A = Bi, La) perovskite-structured ternary solid solution ceramics. Their ferroic polarization and magnetization switching properties were also observed at room temperature and demonstrated to be multiferroic compound.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. 2.

    J. Yu, J.H. Chu, Chin. Sci. Bull. 53, 2097 (2008)

    Google Scholar 

  3. 3.

    P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, P. Borisov, P. Stamenov, J.B. Claridge, M.J. Rosseinsky, Nature 525, 363 (2015)

    Article  Google Scholar 

  4. 4.

    E. Ascher, J. Phys. Soc. Jpn. 28(Suppl), 7 (1970)

    Google Scholar 

  5. 5.

    G.A. Smolenskii, V.A. Bokov, J. Appl. Phys. 35, 915 (1964)

    Article  Google Scholar 

  6. 6.

    A. Perejón, N. Masó, A.R. West, P.E. Sánchez-Jiménez, R. Poyato, J.M. Criado, L.A. Pérez-Maqueda, J. Am. Ceram. Soc. 96, 1220 (2013)

    Article  Google Scholar 

  7. 7.

    C. Tabares-Munoz, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985)

    Article  Google Scholar 

  8. 8.

    P.W. Anderson, Phys. Rev. 79, 350 (1950)

    Article  Google Scholar 

  9. 9.

    J.B. Goodenough, Magnetism and the Chemical Bond (Interscience, New York, 1963)

    Google Scholar 

  10. 10.

    D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Phys. Rev. B 76, 024116 (2007)

    Article  Google Scholar 

  11. 11.

    R. Wongmaneerung, X. Tan, R.W. McCallum, S. Ananta, R. Yimnirun, Appl. Phys. Lett. 90, 242905 (2007)

    Article  Google Scholar 

  12. 12.

    W. Kaczmarek, M. Polomska, Z. Pajak, Phys. Lett. A 7, 227 (1974)

    Article  Google Scholar 

  13. 13.

    T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, J. Am. Ceram. Soc. 97, 1993 (2014)

    Article  Google Scholar 

  14. 14.

    J. Zhuang, L.W. Su, H. Wu, A.A. Bokov, M. Liu, W. Ren, Z.G. Ye, Appl. Phys. Lett. 107, 182906 (2015)

    Article  Google Scholar 

  15. 15.

    T.P. Comyn, T. Stevenson, M. Al-Jawad, S.L. Turner, R.I. Smith, W.G. Marshall, A.J. Bell, R. Cywinski, Appl. Phys. Lett. 93, 232901 (2008)

    Article  Google Scholar 

  16. 16.

    S.C. Yang, A. Kumar, V. Petkov, S. Priya, J. Appl. Phys. 113, 144101 (2013)

    Article  Google Scholar 

  17. 17.

    A. Singh, A. Senyshyn, H. Fuess, S.J. Kennedy, D. Pandey, Phys. Rev. B 89, 024108 (2014)

    Article  Google Scholar 

  18. 18.

    Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)

    Article  Google Scholar 

  19. 19.

    Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012)

    Article  Google Scholar 

  20. 20.

    L.L. Zhang, J. Yu, M. Itoh, J. Appl. Phys. 115, 123523 (2014)

    Article  Google Scholar 

  21. 21.

    L. L. Zhang, J. Yu, J. Mater. Sci.: Mater. Electron. 27, 8725 (2016)

    Google Scholar 

  22. 22.

    Y. Lin, L.L. Zhang, J. Yu, J. Mater. Sci.: Mater. Electron. 27, 1955 (2016)

    Google Scholar 

  23. 23.

    L.L. Zhang, X.B. Hou, J. Yu, Jpn. J. Appl. Phys. 54, 081501 (2015)

    Article  Google Scholar 

  24. 24.

    Y. Lin, L.L. Zhang, W.L. Zheng, J. Yu, J. Mater. Sci.: Mater. Electron. 26, 7351 (2015)

    Google Scholar 

  25. 25.

    S.A. Fedulov, L.I. Pyatigorskaya, YuN Venevtsev, Kristallografiya 10, 291 (1965)

    Google Scholar 

  26. 26.

    A.Y. Kim, S.H. Han, J.S. Kim, C.I. Cheon, J. Korean Ceram. Soc. 48, 307 (2011)

    Article  Google Scholar 

  27. 27.

    D.J. Goossens, C.J. Weekes, M. Avdeev, W.D. Hutchison, J. Solid State Chem. 207, 111 (2013)

    Article  Google Scholar 

  28. 28.

    I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, T. Watanabe, J. Hayashi, H. Yabuta, M. Kubota, T. Fukui, S. Wada, Jpn. J. Appl. Phys. 50, 09ND07 (2011)

  29. 29.

    L.L. Zhang, J. Yu, Appl. Phys. Lett. 106, 112907 (2015)

    Article  Google Scholar 

  30. 30.

    W. L. Zheng, J. Yu, Residual tensile stresses and piezoelectric properties in BiFeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 ternary solid solution perovskite ceramics (unpublished)

  31. 31.

    S. Vura, P.S. Anil Kumar, A. Senyshyn, R. Ranjan, J. Magnet. Magnet. Mater. 365, 76 (2014)

    Article  Google Scholar 

  32. 32.

    J.B. Goodenough, Phys. Rev. 164, 785 (1967)

    Article  Google Scholar 

  33. 33.

    C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401(R) (2005)

    Article  Google Scholar 

  34. 34.

    A.P. Cracknell, Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (Pergamon Press, Oxford, 1975)

    Google Scholar 

Download references

Acknowledgments

J. Yu is grateful to financial supports by FANEDD-200744, NCET-07-0624, Shanghai Pujiang Program-07pj14087, and Shanghai Eastern Scholarship Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Zhang, L., Lin, Y. et al. Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites. J Mater Sci: Mater Electron 27, 12067–12073 (2016). https://doi.org/10.1007/s10854-016-5355-y

Download citation

Keywords

  • BiFeO3
  • Structural Phase Transition
  • LaFeO3
  • Ferroelectric Polarization
  • Homogeneous Solid Solution