TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing

Abstract

Present work reports the performance of a semiconducting PANI doped TiO2 nanocomposite thin film and its application in CO2 sensing. The TiO2–PANI nanocomposite layer was deposited on a simplified test device. Optical properties were investigated using UV–Vis absorption spectroscopy. The surface morphology and structure of synthesized material were characterized by TEM and XRD analysis, respectively. The structural analysis confirmed the formation of TiO2–PANI having an average crystallite size 7 nm. Variations in resistance with the exposure of CO2 to the sensing element were observed. Sensor response (S) as a function of time was calculated and its maximum value was found as 53 for 1000 ppm of CO2. Response and recovery times of the sensor were observed as 9.2 and 5.7 min respectively. Sensor was found reproducible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M.I. Baraton, Sens. Actuators B: Chem. 31, 33–38 (1996)

    Article  Google Scholar 

  2. 2.

    L. Joly, B. Parvitte, V. Zeninari, G. Durry, Appl. Phys. B 86, 743–748 (2007)

    Article  Google Scholar 

  3. 3.

    M.S. Nieuwenhuizen, A.J. Nederl, Sens. Actuators B: Chem. 2, 97–101 (1990)

    Article  Google Scholar 

  4. 4.

    Y. Sadaoka, Sens. Actuators B: Chem. 121, 194–199 (2007)

    Article  Google Scholar 

  5. 5.

    K.G. Ong, C.A. Grimes, Sensor 1, 193–205 (2001)

    Article  Google Scholar 

  6. 6.

    A. Marsal, A. Cornet, J.R. Morante, Sens. Actuators B: Chem. 94, 324–329 (2003)

    Article  Google Scholar 

  7. 7.

    B.C. Yadav, K. Agrahari, S. Singh, T.P. Yadav, J. Mater. Sci.: Mater. Electron. 27, 4172–4179 (2016)

    Google Scholar 

  8. 8.

    A. Marsal, G. Dezanneau, A. Cornet, J.R. Morante, Sens. Actuators B: Chem. 95, 266–270 (2003)

    Article  Google Scholar 

  9. 9.

    R.K. Sonker, B.C. Yadav, Mater. Today: Proc. 3, 2315–2320 (2016)

    Article  Google Scholar 

  10. 10.

    B.C. Yadav, N. Verma, S. Singh, Opt. Laser Technol. 44, 1681–1688 (2012)

    Article  Google Scholar 

  11. 11.

    R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, V. Gupta, RSC Adv. 6, 56149–56158 (2016)

    Article  Google Scholar 

  12. 12.

    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer et al., ACS Appl. Mater. Interfaces 7, 14303–14316 (2015)

    Article  Google Scholar 

  13. 13.

    M. Enachi, O. Lupan, T. Braniste, A. Sarua, L. Chow, Y.K. Mishra et al., Phys. Status Solidi (RRL)—Rapid Res. Lett. 9, 171–174 (2015)

    Article  Google Scholar 

  14. 14.

    B.C. Yadav, R. Srivastava, C.D. Dwivedi, Philos. Mag. 88, 1113–1124 (2008)

    Article  Google Scholar 

  15. 15.

    J. Jawalkar, P. More, S.R. Damkale, R. Kumar, B.C. Yadav, A.K. Vishwanath, S.H. Sonawane, P.K. Khanna, Int. J. Green Nanotechnol.: Phys Chem. 1, L40–50 (2009)

    Article  Google Scholar 

  16. 16.

    P. More, R. Kumar, B.C. Yadav, P.K. Khanna, Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1, 3–10 (2009)

    Article  Google Scholar 

  17. 17.

    C. Xiang, Z. She, Y. Zou, J. Cheng, H. Chu, S. Qiu et al., Ceram. Int. 40, 16343–16348 (2014)

    Article  Google Scholar 

  18. 18.

    H. Lee, S. In, M.W. Horn, Thin Solid Films 565, 105–110 (2014)

    Article  Google Scholar 

  19. 19.

    Z. Han, J. Wang, L. Liao, H. Pan, S. Shen, J. Chen, Appl. Surf. Sci. 273, 349–356 (2013)

    Article  Google Scholar 

  20. 20.

    D. Biskupski, B. Herbig, G. Schottner, R. Moos, Sens. Actuators B: Chem. 153, 329–334 (2011)

    Article  Google Scholar 

  21. 21.

    R.K. Sonker, B.C. Yadav, Adv. Sci. Lett. 20, 1023–1027 (2014)

    Article  Google Scholar 

  22. 22.

    S. Hafeez, X. Fan, A. Husain, C.F. Martin, J. Environ. Sci. 35, 163–171 (2015)

    Article  Google Scholar 

  23. 23.

    D. Madare, N. Cornei, C. Mita, D. Florea, A. Stancu, A. Manole, C. Adomnitel, Ceram. Int. 42, 7353–7359 (2016)

    Article  Google Scholar 

  24. 24.

    R.K. Sonker, A. Sharma, M. Tomar, V. Gupta, B.C. Yadav, Adv. Sci. Lett. 20, 911–916 (2014)

    Article  Google Scholar 

  25. 25.

    R.K. Sonker, B.C. Yadav, Mater. Lett. 160, 581–584 (2015)

    Article  Google Scholar 

  26. 26.

    Y.J. Jeong, C. Balamurugan, D.W. Lee, Sens. Actuators B: Chem. 229, 288–296 (2016)

    Article  Google Scholar 

  27. 27.

    X. Shi, A. Lu, J. Cai, L. Zhang, H. Zhang, J. Li, X. Wang, Bio-macromolecules 13, 2370–2378 (2012)

    Article  Google Scholar 

  28. 28.

    A.G. MacDiarmid, Chem. Int. Ed. 40, 2581–2590 (2001)

    Article  Google Scholar 

  29. 29.

    B.C. Yadav, N. Verma, S. Singh, Opt. Laser Technol. 44, 1681–1688 (2012)

    Article  Google Scholar 

  30. 30.

    J. Stejskal, R.G. Gilbert, Pure Appl. Chem. 74, 857–867 (2002)

    Article  Google Scholar 

  31. 31.

    R.K. Sonker, A. Sharma, Md Shahabuddin, M. Tomar, V. Gupta, Adv. Mater. Lett. 4, 196–201 (2013)

    Article  Google Scholar 

  32. 32.

    R.K. Sonker, A. Sharma, M. Tomar, V. Gupta, B.C. Yadav, Adv. Sci. Lett. 20, 1374–1377 (2014)

    Article  Google Scholar 

  33. 33.

    S. Radhakrishnan, C.R. Siju, D. Mahanta, S. Patil, G. Madras, Electrochim. Acta 54, 1249–1254 (2009)

    Article  Google Scholar 

  34. 34.

    R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Mater. Lett. 152, 189–191 (2015)

    Article  Google Scholar 

  35. 35.

    I. Karaduman, M. Demir, D.E. Yıldız, S. Acar, Phys. Scr. 90, 055802 (2015)

    Article  Google Scholar 

  36. 36.

    D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim, Sens. Actuators B: Chem. 62, 61–66 (2000)

    Article  Google Scholar 

  37. 37.

    J. Herrán, G.G. Mandayo, E. Castaño, Sens. Actuators B: Chem. 129, 705–709 (2008)

    Article  Google Scholar 

  38. 38.

    J. Herrán, G.G. Mandayo, I. Ayerdi, E. Castaño, Sens. Actuators B: Chem. 129, 386–390 (2008)

    Article  Google Scholar 

  39. 39.

    A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A. Barnabe, P. Tailhades, Appl. Surf. Sci. 256, 4715–4719 (2010)

    Article  Google Scholar 

  40. 40.

    T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, Nanotechnology 22, 325501 (2011)

    Article  Google Scholar 

  41. 41.

    C.J. Chiang, K.T. Tsai, Y.H. Lee, H.W. Lin, Y.L. Yang, C.C. Shih, Microelectron. Eng. 111, 409–415 (2013)

    Article  Google Scholar 

  42. 42.

    K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, Sens. Actuators B: Chem. 177, 265–269 (2013)

    Article  Google Scholar 

  43. 43.

    M. Habib, S.S. Hussain, S. Riaz, S. Naseem, Mater. Today: Proc. 2, 5714–5719 (2015)

    Article  Google Scholar 

  44. 44.

    Y.J. Jeong, C. Balamurugan, D.W. Lee, Sens. Actuators B: Chem. 229, 288–296 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author is grateful to Department of Science and Technology, Government of India for SERC-FAST TRACK, Project SR/FTP/PS-21/2009. Prof. Vinay Gupta, Department of Physics is gratefully acknowledged for providing the facilities at University of Delhi, Delhi, India. Mr. Rakesh K. Sonker is grateful to Babasaheb Bhimrao Ambedkar University, Lucknow for fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. C. Yadav.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sonker, R.K., Sabhajeet, S.R. & Yadav, B.C. TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J Mater Sci: Mater Electron 27, 11726–11732 (2016). https://doi.org/10.1007/s10854-016-5310-y

Download citation

Keywords

  • TiO2
  • PANI
  • Pure TiO2
  • TiO2 Thin Film
  • SnO2 Thin Film