Skip to main content
Log in

Gamma irradiation induced modifications in spin coated CdSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconducting nanomaterials of II–VI groups are attractive candidates for various optoelectronic applications in engineering and research due to their size dependent properties. In the present investigations, cadmium selenide nanoparticles synthesised by solvothermal route were dispersed as a thin film on glass substrate via spin coating technique. The properties of thin films exposed to 50, 100 and 150 kGy doses of gamma rays from 60Co source were characterized by XRD, SEM, EDX, UV-spectrophotometer and PL-spectrophotometer. XRD analysis confirmed the change in orientation of planes after gamma exposure. The optical studies revealed decrease in band gap from 2.17 to 2.00 eV and hence an increase in the conductivity of thin films after irradiation. The increased structural disorder and/or defects induced due to gamma irradiation might be responsible for the variation in optical band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al.L Efros, M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000)

    Article  Google Scholar 

  2. M.A. El-Sayed, Acc. Chem. Res. 37, 326 (2004)

    Article  Google Scholar 

  3. J. Lai, W. Niua, R. Luquea, G. Xua, Nano Today 10, 240 (2015)

    Article  Google Scholar 

  4. P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, S. Dong, Nano Res. 3, 794–799 (2010)

    Article  Google Scholar 

  5. M.L. Gaur, P.P. Hankare, K.M. Garadkar, S.D. Delekar, V.M. Bhuse, J. Mater. Sci. Mater. Electron. 25, 190 (2014)

    Article  Google Scholar 

  6. N.A. Hamizi, M.R. Johan, Mater. Chem. Phys. 124, 395 (2010)

    Article  Google Scholar 

  7. S.H. Im, Y.H. Lee, S.I. Seok, Electrochim. Acta 55, 5665 (2010)

    Article  Google Scholar 

  8. N.J.S. Kissinger, M. Jayachandran, K. Perumal, C.S. Raja, Bull. Mater. Sci. 30, 547 (2008)

    Article  Google Scholar 

  9. Z. Bao, X. Yang, B. Li, R. Luo, B. Liu, P. Tang, J. Zhang, L. Wu, W. Li, L. Feng, J. Mater. Sci. Mater. Electron. 27, 7233–7239 (2016)

    Article  Google Scholar 

  10. S. Devadason, M.R. Muhamad, Phys. B 393, 125 (2007)

    Article  Google Scholar 

  11. C.H. Rosmani, S. Abdullah, M. Rusop, Adv. Mater. Res. 626, 401 (2013)

    Article  Google Scholar 

  12. S.M. Rashwan, S.M. Abd El-Wahab, M.M. Mohamed, J. Mater. Sci. Mater. Electron. 18, 575 (2007)

    Article  Google Scholar 

  13. A. Abu El-Fadl, A.S. Soltan, A.A. Abu-Sehly, J. Phys. Chem. Solids 68, 1415 (2007)

    Article  Google Scholar 

  14. E. Atanassova, A. Paskaleva, R. Konakova, D. Spassov, V.F. Mitin, Microelectron. J. 32, 553 (2001)

    Article  Google Scholar 

  15. S.C. Sharma, Mater. Sci. Eng. B Adv. 168, 5 (2010)

    Article  Google Scholar 

  16. P.P. Hankare, P.A. Chate, D.J. Sathe, A.A. Patil, J. Mater. Sci. Mater. Electron. 20, 776 (2009)

    Article  Google Scholar 

  17. A.I. Khudiar, M. Zulfequar, Z.H. Khan, Radiat. Eff. Defect Solids 164, 551 (2009)

    Article  Google Scholar 

  18. M. Kumari, P. Rana, R.P. Chauhan, Nucl. Instrum. Methods Phys. Res. A 753, 116–120 (2014)

    Article  Google Scholar 

  19. S. Shanmugan, D. Mutharasu, Radiat. Phys. Chem. 81, 201 (2012)

    Article  Google Scholar 

  20. Z. Wang, W. Jiang, S. Li, J.S. Tong, Nucl. Instrum. Methods. Phys. Res. B 366, 1 (2016)

    Article  Google Scholar 

  21. A. Sudha, T.K. Maity, S.L. Sharma, Mater. Lett. 164, 372 (2016)

    Article  Google Scholar 

  22. B. Raneesh, A. Saha, Nk Kalarikkal, Radiat. Phys. Chem. 89, 28–32 (2013)

    Article  Google Scholar 

  23. O.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991)

    Google Scholar 

  24. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979), p. 34

    Google Scholar 

  25. J. Tauc, Amorphous and Liquid Semiconductors (Springer, New York, 1974), pp. 159–220

    Book  Google Scholar 

  26. O.I. Shpotyuk, A.O. Matkovsky, A.P. Kovalsky, M.M. Vakiv, Radiat. Eff. Defect Solids 133, 1–4 (1995)

    Article  Google Scholar 

  27. G.A. Amin, S.M. El-Sayed, H.M. Saad, F.M. Hafez, M. Abd-El-Rahman, Radiat. Meas. 42, 400 (2007)

    Article  Google Scholar 

  28. A. El-Korashy, Radiat. Eff. Defect Solids 153, 139–150 (2001)

    Article  Google Scholar 

  29. A.M. Al-Baradi, M.M. El-Nahass, M.M. Abd El-Raheem, A.A. Atta, A.M. Hassanien, Radiat. Phys. Chem. 103, 227–233 (2014)

    Article  Google Scholar 

  30. H.A. Hussain, B. Ali, H.S. Ghalli, J. Basrah Res. Sci. 39, 3 (2013)

    Google Scholar 

  31. S. Ahmad, M.S. Khan, K. Asokan, M. Zulfequa, Optik 126, 3501 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to thanks the Director and staff at Inter University Accelerator Centre (IUAC), New Delhi, India for providing irradiation facility and their support during the irradiation experiment. Authors also acknowledge NIT Kurukshetra, India for providing SEM, XRD, UV-spectrophotometer and PL-spectrophotometer facilities and SAI Lab, Thapar University, Patiala for providing EDX facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, R., Chauhan, R.P. Gamma irradiation induced modifications in spin coated CdSe thin films. J Mater Sci: Mater Electron 27, 11674–11681 (2016). https://doi.org/10.1007/s10854-016-5303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5303-x

Keywords

Navigation