Skip to main content
Log in

Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PVP/[Ba(CH3COO)2 + Y(NO3)3 + Er(NO3)3] composite nanofibers were prepared via electrospinning, and then mixed oxide nanofibers were obtained by calcining the composite nanofibers in air, and finally Ba4Y3F17:Er3+ nanofibers were successfully synthesized by fluorination of the as-prepared mixed oxide nanofibers used as precursor via a double-crucible method applying NH4HF2 as fluorinating agent. X-ray diffraction (XRD) analysis reveals that Ba4Y3F17:Er3+ nanofibers are pure rhombohedral phase. The diameter of Ba4Y3F17:Er3+ nanofibers is 84.3 ± 4.9 nm under the 95 % confidence level. Upconversion emission spectra analysis manifests that Ba4Y3F17:Er3+ nanofibers emit strong green and weak red upconversion emissions centering at 523 (2H11/2 → 4I15/2), 541 (4S3/2 → 4I15/2) and 652 (4F9/2 → 4I15/2) nm, respectively, and the emitting colors of Ba4Y3F17:Er3+ nanofibers are located in the green region in CIE chromaticity coordinates diagram. The optimum doping molar concentration of Er3+ ions is found to be 9 %. Moreover, the formation mechanism and upconversion luminescence of the Ba4Y3F17:Er3+ nanofibers are also investigated. This novel preparation technique can be applied to prepare other rare earth fluoride one-dimensional nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.Y. Chen, H.L. Qiu, P.N. Prasad, X.Y. Chen, Chem. Rev. 114(10), 5161–5214 (2014)

    Article  Google Scholar 

  2. S. Wang, S.Q. Su, S.Y. Song, R.P. Deng, H.J. Zhang, CrystEngComm 14, 4266–4269 (2012)

    Article  Google Scholar 

  3. S. Wang, S.Y. Song, R.P. Deng, H.L. Guo, Y.Q. Lei, F. Cao, X.Y. Li, S.Q. Su, H.J. Zhang, CrystEngComm 12, 3537–3541 (2010)

    Article  Google Scholar 

  4. F.Y. Weng, D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, H. Lin, Ceram. Int. 35(7), 2619–2923 (2009)

    Article  Google Scholar 

  5. X.P. Chen, Q.Y. Zhang, C.H. Yang, D.D. Chen, C. Zhao, Spectrochim. Acta, Part A 74, 441–445 (2009)

    Article  Google Scholar 

  6. B.A. Maksimo, Kh Solans, A.P. Dudka, E.A. Genkina, M. Font-Badria, I.I. Buchinskaya, A.A. Loshmanov, A.M. Golubev, V.I. Simonov, M. Font-Altaba, B.P. Sobolev, Crystallogr. Rep. 41, 50–57 (1996)

    Google Scholar 

  7. A.C. de mello, A.B. Andrade, G.H. Nakamura, S.L. Baldochi, M.E. Valerio, Opt. Mater. 32, 1337–1340 (2010)

    Article  Google Scholar 

  8. M. Mayakova, S.V. Kuznetsovv, P. Fedorov, V.V. Voronov, R. Ermakov, K.N. Boldyrev, Inorg. Mater. 49, 1152–1156 (2013)

    Article  Google Scholar 

  9. G.S. Hong, X. Li, L.D. Shen, M. Wang, C. Wang, X.F. Yu, X.F. Wang, J. Hazard. Mater. 295, 161–169 (2015)

    Article  Google Scholar 

  10. W.W. Pan, R. Han, X. Chi, Q.F. Liu, J.B. Wang, J. Alloys Compd. 577, 192–194 (2013)

    Article  Google Scholar 

  11. Y.Y. Chen, Z.Y. Hou, B. Liu, S.S. Huang, C.X. Li, J. Lin, Dalton Trans. 44, 3118–3127 (2015)

    Article  Google Scholar 

  12. C.Y. Zhou, L. Xu, J. Song, R.Q. Xing, S. Xu, D.L. Liu, H.W. Song, Sci. Rep. 4, 7382–7386 (2014)

    Article  Google Scholar 

  13. Z.Y. Zhang, C.L. Shao, X. Li, L. Zhang, H. Xue, C. Wang, Y. Liu, J. Phys. Chem. C 114(17), 7920–7925 (2010)

    Article  Google Scholar 

  14. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Nanoscale 6(5), 2945–2952 (2014)

    Article  Google Scholar 

  15. Z.Y. Zhang, C.L. Shao, Y.Y. Sun, J.B. Mu, M.Y. Zhang, P. Zhang, Z.C. Guo, P.P. Liang, C.H. Wang, Y.C. Liu, J. Mater. Chem. 22(4), 1387–1395 (2012)

    Article  Google Scholar 

  16. D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Nanopart. Res. 15(6), 1–10 (2013)

    Google Scholar 

  17. D. Li, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Mater. Sci. 48(17), 5930–5937 (2013)

    Article  Google Scholar 

  18. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, RSC Adv. 5(4), 2523–2530 (2015)

    Article  Google Scholar 

  19. J. Tian, Q.L. Ma, X.T. Dong, W.S. Yu, M. Yang, Y. Yang, J.X. Wang, G.X. Liu, RSC Adv. 6, 36180–36191 (2016)

    Article  Google Scholar 

  20. X.H. Peng, A.C. Santulli, E. Sutter, S.S. Wong, Chem. Sci. 3(4), 1262–1272 (2012)

    Article  Google Scholar 

  21. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Nanopart. Res. 16(2), 2239–2248 (2014)

    Article  Google Scholar 

  22. H. Song, H. Yu, G. Pan, X. Bai, B. Dong, X. Zhang, Chem. Mater. 20(14), 4762–4767 (2008)

    Article  Google Scholar 

  23. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79(2), 290–297 (2014)

    Article  Google Scholar 

  24. X.M. Guo, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, CrystEngComm 16(24), 5409–5417 (2014)

    Article  Google Scholar 

  25. W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Electron. Mater. 43(9), 3701–3707 (2014)

    Article  Google Scholar 

  26. Y.W. Liu, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Chem. Eng. J. 284, 831–840 (2016)

    Article  Google Scholar 

  27. J.X. Wang, X.T. Dong, Q. Cui, G.X. Liu, W.S. Yu, J. Nanosci. Nanotechnol. 11, 2514–2519 (2011)

    Article  Google Scholar 

  28. K. Lun, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.—Mater. Electron. 26(8), 5994–6003 (2015)

    Article  Google Scholar 

  29. X. Xi, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci.—Mater. Electron. 25(9), 4024–4032 (2014)

    Article  Google Scholar 

  30. K. Lun, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci.—Mater. Electron. 25(12), 5395–5402 (2014)

    Article  Google Scholar 

  31. P. Zou, X. Hong, Y. Ding, Z. Zhang, X. Chu, T. Shaymurat, C. Shao, Y. Liu, J. Phys. Chem. C 116, 5787–5791 (2012)

    Article  Google Scholar 

  32. G.S. Yi, B.Q. Sun, F.Z. Yang, D.P. Chen, Y.X. Zhou, J. Cheng, Chem. Mater. 14(7), 2910–2914 (2002)

    Article  Google Scholar 

  33. Z.G. Xia, J. Li, Y. Luo, L.B. Liao, J. Am. Ceram. Soc. 95(10), 3229–3234 (2012)

    Article  Google Scholar 

  34. Y.H. Song, Y.J. Huang, L.H. Zhang, Y.H. Zheng, N. Guo, H.P. You, RSC Adv. 2, 4777–4781 (2012)

    Article  Google Scholar 

  35. Y. Li, X.T. Wei, M. Yin, J. Alloys Compd. 509, 9865–9868 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 51573023, 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Yu or Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, D., Ma, Q. et al. Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination. J Mater Sci: Mater Electron 27, 11666–11673 (2016). https://doi.org/10.1007/s10854-016-5302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5302-y

Keywords

Navigation