Skip to main content
Log in

A facile method to fabricate superhydrophobic ZnO nanostructure with petal effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanostructures were fabricated on glass substrate through a convenient deposition process. Firstly, ZnO seed layers were deposited on glass substrates through sol–gel method. Secondly, the ZnO nanostructures were then grown in a Teflon-lined stainless steel autoclave by immersing the seed layers into aqueous solution containing zinc nitrate hexahydrate and ammonia. The microstructures, morphologies, photoluminescence spectra and hydrophobicity of the nanostructures were analyzed by X-ray diffraction spectrometer, field emission scanning electron microscopy, laser micro-Raman spectrometer and contact angle apparatus, respectively. It can be seen that ZnO nanostructures display different surface morphologies such as ZnO nanorods parallel to the substrate surface, like-pencil ZnO nanorods and bending ZnO nanorods by altering the PH value. The largest intensity ratio of the UV/visible emission and the superhydrophobic surfaces (CA = 156°) with high adhesion can be achieved in the sample grown in the solutions with the PH value of 11.2. The high adhesion may be attributed to the strong capillary force and the ZnO nanostructures with petal effect can be explained by Wenzel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Article  Google Scholar 

  2. X. Gao, L. Jiang, Biophysics: water-repellent legs of water striders. Nature 432, 36 (2004)

    Article  Google Scholar 

  3. Y. Zhang, Y. Chen, L. Shi, J. Li, Z. Guo, Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem. 22, 799–815 (2012)

    Article  Google Scholar 

  4. E.L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, C. Fotakis, Reversible photoinduced wettability transition of hierarchical ZnO structures. J. Phys. Chem. C 113, 2891–2895 (2009)

    Article  Google Scholar 

  5. X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, D.B. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004)

    Article  Google Scholar 

  6. M. Liu, Y. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid–solid adhesion. Acc. Chem. Res. 43, 368–377 (2010)

    Article  Google Scholar 

  7. M.E. Kavousanakis, N.T. Chamakos, A.G. Papathanasiou, Connection of intrinsic wettability and surface topography with the apparent wetting behavior and adhesion properties. J. Phys. Chem. C 119, 15056–15066 (2015)

    Article  Google Scholar 

  8. X. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006)

    Article  Google Scholar 

  9. S. Liu, S.S. Latthe, H. Yang, B. Liu, R. Xing, Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceram. Int. 41, 11719–11725 (2015)

    Article  Google Scholar 

  10. W.-L. Min, B. Jiang, P. Jiang, Bioinspired self-cleaning antireflection coatings. Adv. Mater. 20, 3914 (2008)

    Article  Google Scholar 

  11. N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res. Lett. 2, 577–596 (2007)

    Article  Google Scholar 

  12. M.H. Jin, X.J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977 (2005)

    Article  Google Scholar 

  13. X. Hong, X. Gao, L. Jiang, Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 129, 1478 (2007)

    Article  Google Scholar 

  14. A. Santhosh Kumar, K.K. Nagaraja, H.S. Nagaraja, Effect of Sn doping on structural, optical, electrical and wettability properties of oriented ZnO nanorod arrays. J. Mater. Sci.: Mater. Electron. 24, 3812–3822 (2013)

    Google Scholar 

  15. J. Li, Q. Sun, S. Han, J. Wang, Z. Wang, C. Jin, Reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity of hybrid ZnO/bamboo surfaces via alternation of UV irradiation and dark storage. Prog. Org. Coat. 87, 155–160 (2015)

    Article  Google Scholar 

  16. B.-J. Li, L.-J. Huang, M. Zhou, N.-F. Ren, Reversible wettability control of ZnO thin films synthesized by hydrothermal process on different buffer layers. Mater. Lett. 110, 160–163 (2013)

    Article  Google Scholar 

  17. X. Du, X. Huang, X. Li, X. Meng, L. Yao, J. He, H. Huang, X. Zhang, Wettability behavior of special microscale ZnO nail-coated mesh films for oil–water separation. J. Colloid Interface Sci. 458, 79–86 (2015)

    Article  Google Scholar 

  18. J. Liu, S. Lee, K. Lee, Y.H. Ahn, J.Y. Park, K.H. Koh, Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction. Nanotechnology 19, 185607 (2008)

    Article  Google Scholar 

  19. M. Gong, X. Xu, Z. Yang, Y. Liu, H. Lv, L. Lv, A reticulate superhydrophobic self-assembly structure prepared by ZnO nanowires. Nanotechnology 20, 165602 (2009)

    Article  Google Scholar 

  20. J.-C. Li, Q. Cao, X.-Y. Hou, Effects of Ag-induced acceptor defects on the band gap tuning and conductivity of Li:ZnO films. J. Appl. Phys. 113, 203518 (2013)

    Article  Google Scholar 

  21. R. Vettumperumal, S. Kalyanaraman, R. Thangavel, A comparative study of structural, surface morphology and optical properties of Na and Mg codoped ZnO nanocrystalline thin films prepared using sol–gel spin coating technique. J. Mol. Struct. 1059, 61–67 (2014)

    Article  Google Scholar 

  22. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)

    Article  Google Scholar 

  23. R.-C. Wang, C.-P. Liu, J.-L. Huang, S.-J. Chen, ZnO symmetric nanosheets integrated with nanowalls. Appl. Phys. Lett. 87, 053103 (2005)

    Article  Google Scholar 

  24. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng, Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 94, 354–358 (2003)

    Article  Google Scholar 

  25. B. El Filali, T.V. Torchynska, A.I. Diaz Cano, Photoluminescence and Raman scattering study in ZnO: Cu nanocrystals. J. Lumin. 161, 25–30 (2015)

    Article  Google Scholar 

  26. J. Xi, L. Jiang, Biomimic superhydrophobic surface with high adhesive forces. Ind. Eng. Chem. Res. 47, 6354–6357 (2008)

    Article  Google Scholar 

  27. S. Peng, W. Deng, A facile approach for preparing biomimetic polymer macroporous structures with petal or lotus effects. New J. Chem. 38, 1011–1018 (2014)

    Article  Google Scholar 

  28. Y.-T. Lin, J.-H. Chou, A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect. J. Micromech. Microeng. 24, 055021 (2014)

    Article  Google Scholar 

  29. N. Anantharaju, M.V. Panchagnula, S. Vedantam, S. Neti, S. Tatic-Lucic, Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces. Langmuir 23, 11673–11676 (2007)

    Article  Google Scholar 

  30. Z. Cheng, M. Du, H. Lai, N. Zhang, K. Sun, From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Nanoscale 5, 2776–2783 (2013)

    Article  Google Scholar 

  31. L. Wang, J. Wei, Z. Su, Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer. Langmuir 27, 15299–15304 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51102072, 51472003, 51272001, 21201052, 51572002), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2015ZD32, KJ2012Z336, KJ2013A224), Fund of Hefei Normal University (Nos. 2015QN05, 2016CXYZB001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Lv, Gang He or Zhaoqi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zhu, W., Lv, J. et al. A facile method to fabricate superhydrophobic ZnO nanostructure with petal effect. J Mater Sci: Mater Electron 27, 11524–11529 (2016). https://doi.org/10.1007/s10854-016-5281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5281-z

Keywords

Navigation