Skip to main content
Log in

Microstructural, magnetic and magneto-transport properties of NiO thin film deposited on Si (100) substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiO thin film on p- and n-type Si (100) substrates were fabricated by electron beam evaporation technique and studied by structural, morphological, magnetic and magneto-electronic transport characterization techniques. The room temperature interfacial chemistry across the interfaces is found to affect the morphology, transport and magnetic behaviour of the structures. Structural study has shown the presence of magnetic nickel silicide phases along with some metallic phases as a result of interfacial intermixing. Isolated nano-granular features of magnetic grains along with the presence of clustered grains are observed. Strong magnetic signal strength is observed for NiO/nSi structure as compared to the interface on pSi substrate which suggests the formation of more magnetic silicide phases resulting in a higher magnetization value with increased coercivity. Magnetization characteristics of the NiO thin films on Si substrates have shown a nearly superparamagnetic behaviour with weak ferromagnetic contribution as compared to bulk antiferromagnetic nature of NiO. Electronic transport study measured across NiO/nSi interface have shown the enhancement in conductivity up to 2–3 orders of magnitude than for NiO film on pSi substrate with significant magnetic field sensitivity. Magnetic field induced enhanced current has been observed for NiO/nSi structure which is related to the magnetic field response of magnetic grains (of nickel silicide phases) or isolated magnetic clusters favouring the paths for spin alignment or spin-dependent scattering resulting in a negative magnetoresistance of ~50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Žutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  2. A.A. Demkov, A.B. Posadas, Integration of Functional Oxides with Semiconductors (Springer, 2014), ISBN: 978-1-4614-9319-8, doi:10.1007/978-1-4614-9320-4, p. 278

  3. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393–1396 (1997)

    Article  Google Scholar 

  4. W.L. Roth, Phys. Rev. 110, 1333–1341 (1958)

    Article  Google Scholar 

  5. S. Sako, Y. Umemura, K. Ohshima, M. Sakai, J. Phys. Soc. Jpn. 65, 280–284 (1996)

    Article  Google Scholar 

  6. G.N. Rao, Y.D. Yao, J.W. Chen, IEEE Trans. Magn. 41, 3409–3411 (2005)

    Article  Google Scholar 

  7. F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, S. Mørup, Phys. Rev. B 61, 6826–6838 (2000)

    Article  Google Scholar 

  8. X. Gonze, G.M. Rignanese, M. Verstraete, J.M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, Z. Kristallogr. 220, 558–562 (2005)

    Google Scholar 

  9. G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339–2342 (1984)

    Article  Google Scholar 

  10. E.B. Kadossov, K.J. Gaskell, M.A. Langell, J. Comput. Chem. 28, 1240–1251 (2007)

    Article  Google Scholar 

  11. J. Li, T.B.S. Jensen, N.H. Andersen, J.L. Zarestky, R.W. McCallum, J.H. Chung, J.W. Lynn, D. Vaknin, Phys. Rev. B 79, 174435-1–174435-9 (2009)

    Google Scholar 

  12. A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552–570 (1999). (and references therein)

    Article  Google Scholar 

  13. H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236, 27–31 (1993)

    Article  Google Scholar 

  14. M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, S. Yamada, Jpn. J. Appl. Phys. 33, 6656–6662 (1994)

    Article  Google Scholar 

  15. M. Bögner, A. Fuchs, K. Scharnagl, R. Winter, T. Doll, I. Eisele, Sens. Actuators B Chem. 47, 145–152 (1998)

    Article  Google Scholar 

  16. M.J. Carey, A.E. Berkowitz, J. Appl. Phys. 73, 6892–6897 (1993)

    Article  Google Scholar 

  17. Q. Guo, C. Xu, D.W. Goodman, Langmuir 14, 1371–1374 (1998)

    Article  Google Scholar 

  18. C. Mocuta, A. Barbier, G. Renaud, Y. Samson, M. Noblet, J. Magn. Magn. Mater. 211, 283–290 (2000)

    Article  Google Scholar 

  19. A.C. Wang, J.A. Belot, T.J. Marks, J. Mater. Res. 14, 1132–1136 (1999)

    Article  Google Scholar 

  20. A.M. Reddy, A.S. Reddy, P.S. Reddy, Vacuum 85, 949–954 (2011)

    Article  Google Scholar 

  21. A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, W. Wlodarski, Thin Solid Films 517, 2775–2780 (2009)

    Article  Google Scholar 

  22. T. Kamiya, H. Ohta, M. Kamiya, K. Nomura, K. Ueda, M. Hirano, H. Hosono, J. Mater. Res. 19, 913–920 (2004)

    Article  Google Scholar 

  23. A. Qureshi, A. Mergen, A. Altindal, Sens. Actuators B Chem. 135, 537–540 (2009)

    Article  Google Scholar 

  24. P. Lv, Z.A. Tang, J. Yu, F.T. Zhang, G.F. Wei, Z.X. Huang, Y. Hu, Sens. Actuators B Chem. 132, 74–80 (2008)

    Article  Google Scholar 

  25. N. Srivastava, P.C. Srivastava, Physica E Low Dimens. Syst. Nanostruct. 42, 2225–2230 (2010)

    Article  Google Scholar 

  26. S. Rakshit, S. Ghosh, S. Chall, S.S. Mati, S.P. Moulik, S.C. Bhattacharya, RSC Adv. 3, 19348–19356 (2013)

    Article  Google Scholar 

  27. H. Pang, Q. Lu, Y. Zhang, Y. Li, F. Gao, Nanoscale 2, 920–922 (2010)

    Article  Google Scholar 

  28. T. Bolse, A. Elsanousi, H. Paulus, W. Bolse, Nucl. Instrum. Methods Phys. Res. B 244, 115–119 (2006)

    Article  Google Scholar 

  29. K. Dautel, R. Ferhati, W. Bolse, Nucl. Instrum. Methods Phys. Res. B 318, 258–262 (2014)

    Article  Google Scholar 

  30. W. Bolse, B. Schattat, A. Feyh, Appl. Phys. A 77, 11–15 (2003)

    Article  Google Scholar 

  31. P. Mallick, D.C. Agarwal, C. Rath, R. Biswal, D. Behera, D.K. Avasthi, D. Kanjilal, P.V. Satyam, N.C. Mishra, Nucl. Instrum. Methods Phys. Res. B 266, 3332–3335 (2008)

    Article  Google Scholar 

  32. P. Mallick, R. Biswal, C. Rath, D.C. Agarwal, A. Tripathi, D.K. Avasthi, D. Kanjilal, P.V. Satyam, N.C. Mishra, Nucl. Instrum. Methods Phys. Res. B 268, 470–475 (2010)

    Article  Google Scholar 

  33. P. Mallick, C. Rath, J. Prakash, D.K. Mishra, R.J. Choudhary, D.M. Phase, A. Tripathi, D.K. Avasthi, D. Kanjilal, N.C. Mishra, Nucl. Instrum. Methods Phys. Res. B 268, 1613–1617 (2010)

    Article  Google Scholar 

  34. H.D. Chopra, D.X. Yang, P.J. Chen, D.C. Parks, W.F. Egelhoff Jr., Phys. Rev. B 61, 9642–9652 (2000)

    Article  Google Scholar 

  35. W.H. Lee, D.G. Hwang, S.S. Lee, J. Magn. 14, 18–22 (2009)

    Article  Google Scholar 

  36. L. Gabillet, B. Diouf, J.F. Bobo, D. Serrate, J.M. De Teresa, J. Magn. Magn. Mater. 272–276, E1525–E1526 (2004)

    Article  Google Scholar 

  37. L.D. Bianco, F. Boscherini, M. Tamisari, F. Spizzo, M.V. Antisari, E. Piscopiello, J. Phys. D Appl. Phys. 41, 134008-1–134008-7 (2008)

    Google Scholar 

  38. G. Li, C.W. Leung, C. Shueh, H.F. Hsu, H.R. Huang, K.W. Lin, P.T. Lai, P.W.T. Pong, Surf. Coat. Technol. 228, 5437–5441 (2013)

    Article  Google Scholar 

  39. N. Srivastava, P.C. Srivastava, J. Appl. Phys. 111, 123909-1–123909-9 (2012)

    Google Scholar 

  40. N. Srivastava, P.C. Srivastava, Radiat. Eff. Defects Solids 169, 529–537 (2014)

    Article  Google Scholar 

  41. N. Srivastava, P.C. Srivastava, J. Mater. Sci. 50, 7610–7626 (2015)

    Article  Google Scholar 

  42. N. Srivastava, P.C. Srivastava, Physica E Low Dimens. Syst. Nanostruct. 73, 7–11 (2015)

    Article  Google Scholar 

  43. http://www.google.co.in/patents/US9023422

  44. A. Alberti, C. Bongiorno, C. Mocuta, T. Metzger, C. Spinella, E. Rimini, J. Appl. Phys. 105, 0935061–0935066 (2009)

    Article  Google Scholar 

  45. Y.J. Chang, J.L. Erskine, Phys. Rev. B 28, 5766–5773 (1983)

    Article  Google Scholar 

  46. G. Pigozzi, D. Mukherji, Y. Elerman, P. Strunz, R. Gilles, M. Hoelzel, B. Barbier, P. Schmutz, J. Alloys Compd. 584, 119–127 (2014)

    Article  Google Scholar 

  47. J.P. Eberhart, Analyse Structurale et Chimiques des Matériaux (Paris: Ed. Dunod) 46, 407 (1989)

  48. A. DiCarlo, M.R. Scheinfein, R.V. Chamberlin, Appl. Phys. Lett. 61, 2108–2110 (1992)

    Article  Google Scholar 

  49. J. Červenka, M.I. Katsnelson, C.F.J. Flipse, Nat. Phys. 5, 840–844 (2009)

    Article  Google Scholar 

  50. B.J. Garrison, W.A. GoddardIII, Phys. Rev. B 36, 9805–9808 (1987)

    Article  Google Scholar 

  51. M. Hashim, S.E. Shirsath, S.S. Meena, R.K. Kotnala, S. Kumar, D. Ravinder, M. Raghasudha, P. Bhatt, E. Sentürk, Alimuddin, R. Kumar, J. Magn. Magn. Mater. 381, 416–421 (2015)

    Article  Google Scholar 

  52. K.R. Reddy, K.-P. Lee, J.Y. Kim, Y. Lee, J. Nanosci. Nanotechnol. 8, 5632–5639 (2008)

    Article  Google Scholar 

  53. K.R. Reddy, W. Park, B.C. Sin, J. Noh, Y. Lee, J. Colloid Interface Sci. 335, 34–39 (2009)

    Article  Google Scholar 

  54. K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)

    Article  Google Scholar 

  55. K.R. Reddy, K.-P. Lee, A.I. Gopalan, A.M. Showkat, Polym. Adv. Technol. 18, 38–43 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. O. N. Srivastava (Dept. of Physics, BHU) for providing the access to XRD measurements. The authors would also like to thank Dr. Indra Sulania (Scientist, IUAC, New Delhi, India) for performing MFM/AFM measurements and to Mr. M. Siva Kumar (ACMS Building, IIT Kanpur, India) for magnetization measurements. N. Srivastava wishes to acknowledge University Grants Commission, New Delhi, India for providing the RFSMS (Research Fellowship in Science for Meritorious Students) fellowship during the research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelabh Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Srivastava, P.C. Microstructural, magnetic and magneto-transport properties of NiO thin film deposited on Si (100) substrates. J Mater Sci: Mater Electron 27, 11478–11487 (2016). https://doi.org/10.1007/s10854-016-5275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5275-x

Keywords

Navigation