Skip to main content
Log in

Effect of Cu2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study copper substituted nickel–zinc ferrite powders with the general composition Ni0.6−xCuxZn0.4Fe2O4 (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) were prepared via auto-combustion sol–gel method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy, Mössbauer spectroscopy, vibrating sample magnetometer (VSM) and superconducting quantum interference device analysis were carried out in order to characterize the structural and magnetic properties of particles. The XRD results confirmed the formation of single phase spinel ferrite particles for all of the samples. The results of FTIR analysis indicated that the there are two main frequency bands, namely, the high frequency band observed at ~577 cm−1 and the low frequency band observed at ~450 cm−1. These two bands correspond to the intrinsic vibrations of tetrahedral and octahedral Fe3+–O2− complexes, respectively, and are the characteristics of all the ferrite materials. The size of particles was around 80–800 nm. The VSM results revealed that with an increase in the amount of copper in ferrites, the saturation magnetization increased. Saturation magnetization increased to 97 emu/g for x = 0.05 at room temperature and increased to 261 emu/g for x = 0 and 0.05 at 2 K. The results indicated that the powder is suitable for the application in multilayer chip inductor due to its low temperature sinterability and good magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Momoi, A. Nakano, T. Nomura, Nano-structure control of NiCuZn ferrites for multilayer chip components, in Proceedings of the Sixth International Conference on Ferrites, Japan, Kyoto, 1992, p. 1202

  2. M. Fujimoto, Inner stress induced by Cu metal precipitation at grain boundaries in low-temperature-fired Ni–Zn–Cu ferrite. J. Am. Ceram. Soc. 77(11), 2873 (1994)

    Article  Google Scholar 

  3. T. Nomura, A. Nakano, New evolution of ferrite for multilayer chip components, in Proceedings of the Sixth International Conference on Ferrites, Tokyo, 1992, p. 1198

  4. M. Satoh, A. Ono, T. Maruno, The technology of electrode for multilayer chip inductor (II)—internal Conductor, in Proceedings of the Sixth International Conference on Ferrites, Tokyo, 1992, p. 1210

  5. H. Watanabe, Y. Kanagawa, T. Suzuki, Sintered ferrite body, chip inductor, and composite LC part, US Patent 4956 (1990) p. 114

  6. M. Shinagawa, T. Yamaguchi, Effect of microstructure and density on stress behavior in Ni–Cu–Zn, in Proceedings of the Sixth International Conference on Ferrites, Tokyo, 1992, p. 105

  7. H. Zhang, Preparation and investigation of (Ni0.15Cu0.25Zn0.60)Fe1.96O4 ferrite with very high initial permeability from self-propagated powders. J. Magn. Magn. Mater. 213, 304–308 (2000)

    Article  Google Scholar 

  8. J. Smit, H.P.J. Wijn, Ferrites: Philips Technical Library, 1959

  9. O.F. Caltun, L. Spinu, A. Stancu, Study of the microstructure and of the permeability spectra of Ni–Zn–Cu ferrites. J. Magn. Magn. Mater. 242–245, 160–162 (2002)

    Article  Google Scholar 

  10. A. Dias, R.L. Moreira, Microstructural dependence of the magnetic properties of sintered NiZn ferrites from hydrothermal powders. J. Magn. Magn. Mater. 172, L9 (1997)

    Article  Google Scholar 

  11. T.T. Scrinivasan, P. Ravindranathan, Studies on high-density nickel zinc ferrite and its magnetic properties using novel hydrazine precursors. J. Appl. Phys. 63(8), 3789 (1988)

    Article  Google Scholar 

  12. V. Cabuil, V. Dupuis, D. Talbot, S. Neveu, Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size. J. Magn. Magn. Mater. 323, 1238 (2011)

    Article  Google Scholar 

  13. M. Jean, V. Nachbaur, J.M.L. Breton, Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe3+ concentration. J. Alloys Compd. 513, 425 (2012)

    Article  Google Scholar 

  14. T.F. Marinca, I. Chicinas, O. Isnard, V. Pop, F. Popa, Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite—NiFe2O4 obtained by reactive milling. J. Alloys Compd. 509, 7931 (2011)

    Article  Google Scholar 

  15. E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloys Compd. 518, 11 (2012)

    Article  Google Scholar 

  16. L.W. Yeary, J.W. Moon, C.J. Rawn, L.J. Love, A.J. Rondinone, J.R. Thompson, B.C. Chakoumakos, T.J. Phelps, Magnetic properties of bio-synthesized zinc ferrite nanoparticles. J. Magn. Magn. Mater. 323, 3043 (2011)

    Article  Google Scholar 

  17. J. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–103 (1978)

    Article  Google Scholar 

  18. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)

    Article  Google Scholar 

  19. S.E. Shirsath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, A. Morisako, Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. Magn. Magn. Mater. 323, 3104 (2011)

    Article  Google Scholar 

  20. R.J. Brook, Pore-grain boundary interactions and grain growth. J. Am. Ceram. Soc. 52(1), 56 (1969)

    Article  Google Scholar 

  21. S.S. Belled, S.C. Watawe, B.K. Chougule, Microstructure and permeability studies of mixed Li–Cd ferrites. J. Magn. Magn. Mater. 195, 57 (1999)

    Article  Google Scholar 

  22. D.L. Zhao, Q. Lv, Z.M. Shen, Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J. Alloys Compd. 480, 634–638 (2009)

    Article  Google Scholar 

  23. K. Lagarec, D.G. Rancourt, Recoil Mössbauer Spectral Analysis Software for Windows, Version 1.02, Department of Physics, University of Ottawa, Ottawa, ON, 1998

  24. M.A. Amer, T.M. Meaz, S. Ata-Allah, S. Aboul-Enein, M.O. Abd-El-Hamid, Mössbauer, infrared and X-ray studies of Ni0.5Zn0.5CrxFe2−xO4 ferrites. Egypt. J. Solids 28, 275–293 (2005)

    Google Scholar 

  25. L.K. Leung, B.J. Evans, A.H. Morrish, Low-temperature Mössbauer study of a nickel–zinc ferrite: ZnxNi1−xFe2O4. Phys. Rev. B 8, 29–43 (1973)

    Article  Google Scholar 

  26. I. Yaacob, A. Nunes, A. Bose, D. Shah, Synthesis and characterization of magnetic nanoparticles in spontaneously generated vesicles. J. Colloid Interface Sci. 168, 289 (1994)

    Article  Google Scholar 

  27. X. Lu, G. Liang, Q. Sun, C. Yang, High-frequency magnetic properties of Ni–Zn ferrite nanoparticles synthesized by a low temperature chemical method. Mater. Lett. 65, 674–676 (2011)

    Article  Google Scholar 

  28. L. Neel, Propriétés magnétiques des ferrites: ferrimagnétisme et anti- ferromagnétisme. (Magnetic properties of ferrites: ferrimagnetism and anti ferromagnétisme.). Ann. Phys. 3, 137–198 (1948)

    Google Scholar 

  29. Z. Peng, X. Fu, H. Ge, Z. Fu, C. Wang, L. Qi, H. Miao, Effect of Pr3+ doping on magnetic and dielectric properties of Ni–Zn ferrites by one-step synthesis. J. Magn. Magn. Mater. 323, 2513 (2011)

    Article  Google Scholar 

  30. A. Ghasemi, X. Liu, A. Morisako, Magnetic and microwave absorption properties of BaFe12−x(Mn0.5Cu0.5Zr)x/2O19 synthesized by sol–gel processing. J. Magn. Magn. Mater. 316, 105–108 (2007)

    Article  Google Scholar 

  31. D.S. Mathew, R.S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in micro emulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baghshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaahmadi, M., Baghshahi, S. & Ghasemi, A. Effect of Cu2+ substitution on structural and magnetic properties of Ni–Zn ferrite nanopowders. J Mater Sci: Mater Electron 27, 11447–11456 (2016). https://doi.org/10.1007/s10854-016-5271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5271-1

Keywords

Navigation