Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11439–11446 | Cite as

The design and synthesis of polyhedral Ti-doped Co3O4 with enhanced lithium-storage properties for Li-ion batteries

  • Yana Li
  • Xianhua HouEmail author
  • Yajie Li
  • Qiang Ru
  • Shejun Hu
  • Kwok-ho Lam


Polyhedral Ti-doped Co3O4 nanoparticles with a diameter of about 100–300 nm have been easily synthesized by a co-heat precipitated method. The structure and morphology of the materials were characterized by X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The electrochemical measurements were implemented on half coin cells. Galvanostatic charge, discharge performance, cyclic voltammetry and impedance measurement were utilized to investigate the electrochemical properties. The Ti-doped Co3O4 electrodes showed superior performance compared with the undoped Co3O4 electrodes, including the enhanced rate capability, and better capacity retention. At current densities of 500 mA g−1, the Ti-doped Co3O4 electrodes exhibited initial capacities of 1173.6 and 849.0 mAh g−1, and the capacities were maintained at 850.3 and 838.6 mAh g−1 after 120 cycles. These excellent electrochemical properties can be attributed to the nanoscale structure and Ti doping.


Co3O4 Anode Material Solid Electrolyte Interphase Solid Electrolyte Interphase Film Ethyl Methyl Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Scientific and Technological Plan of Guangdong Province (2016A050503040, 2016B010114002), the Natural Science Foundation of Guangdong Province (2014A030313436), The Scientific and Technological Plan of Guangzhou City (201607010322, 201607010274) and The Hong Kong Polytechnic University (4-ZZDC and 1-ZVGH) and Strategic Plan (1-ZVCG).


  1. 1.
    Jingjing Ma, Huijun Wang, Xia Yang, Yaqin Chai, Ruo Yuan, J. Mater. Chem. A 3, 12038–12043 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21, 4614–4618 (2009)CrossRefGoogle Scholar
  3. 3.
    Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, J. Power Sources 195, 1720–1725 (2010)CrossRefGoogle Scholar
  4. 4.
    J.S. Xu, Y.J. Zhu, A.C.S. Appl, Mater. Interfaces 4, 4752–4757 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Mao, Q. Kong, B. Guo, L. Shen, Z. Wang, L. Chen, Electrochim. Acta 105, 162–169 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shena, G. Han, J. Mater. Chem. 22, 20566–20573 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Xia, M. Lai, L. Lu, J. Mater. Chem. 20, 6896–6902 (2010)CrossRefGoogle Scholar
  8. 8.
    Y.M. Kang, M.S. Song, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu, S.X. Dou, Electrochim. Acta 50, 3667–3673 (2005)CrossRefGoogle Scholar
  9. 9.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496–499 (2000)CrossRefGoogle Scholar
  10. 10.
    J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24, 5166–5180 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Yu, C.H. Chen, J.L. Shui, S. Xie, Angew. Chem. Int. Ed. 44, 7085–7089 (2005)CrossRefGoogle Scholar
  12. 12.
    W.M. Mei, J. Huang, L.P. Zhu, Z.Z. Ye, Y.J. Mai, J.P. Tu, J. Mater. Chem. 22, 9315–9321 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Zhang, Z.L. Xu, Y.B. He, S. Abouali, M. Akbari-Garakani, E. Kamali-Heidari, F. Kang, J.K. Kim, Nano Energy. 4, 88–96 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Tian, H.L. Zou, J.X. Fu, X.F. Yang, Y. Wang, H.L. Guo, X.H. Fu, C.L. Liang, M.M. Wu, P.K. Shen, Q.M. Gao, Adv. Funct. Mater. 20, 617–623 (2010)CrossRefGoogle Scholar
  15. 15.
    Z.S. Wu, G. Zhuo, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Nano Energy. 1, 107–131 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Pasero, N. Reeves, A.R. West, J. Power Sources 141, 156–158 (2005)CrossRefGoogle Scholar
  17. 17.
    Q. Li, W. Yin, Z.Q. Li, X.K. Wang, Y.X. Qi, J.Y. Ma, A.C.S. Appl, Mater. Interfaces 5, 10975–10984 (2013)CrossRefGoogle Scholar
  18. 18.
    H.T. Fang, M. Liu, D.W. Wang, T. Sun, D.S. Guan, F. Li, J. Zhou, T.K. Sham, H.M. Cheng, Nanotechnology 20, 225701 (2009)CrossRefGoogle Scholar
  19. 19.
    L.T. Anh, A.K. Rai, T.V. Thi, J. Gim, S. Kim, E. Shin, J.S. Lee, J. Kim, J. Power Sources 243, 891–898 (2013)CrossRefGoogle Scholar
  20. 20.
    T.V. Thia, A.K. Rai, J. Gim, J. Kim, J. Power Sources 292, 23–30 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Mo, Q. Ru, X. Song, S. Hu, B. An, J. Appl. Electrochem. 44, 781–788 (2014)CrossRefGoogle Scholar
  22. 22.
    J.Y. Xiang, J.P. Tu, Y.Q. Qiao, X.L. Wang, J. Zhong, D. Zhang, C.D. Gu, J. Phys. Chem. C 115, 2505–2513 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, J. Power Sources 97, 235–239 (2001)CrossRefGoogle Scholar
  24. 24.
    S.A. Needham, G.X. Wang, K. Kostantinov, Y. Tournayre, Z. Lao, H.K. Liu, Electrochem Solid State Lett. 9, A315–A319 (2006)CrossRefGoogle Scholar
  25. 25.
    N. Du, H. Zhang, B.D. Chen, J.B. Wu, X.Y. Ma, Z.H. Liu, Y.Q. Zhang, D.R. Yang, X.H. Huang, J.P. Tu, Adv. Mater. 19, 4505–4509 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Laruelle, R.H. Urbina, L. Dupont, P. Poizot, J.M. Tarascon, J. Electrochem. Soc. 148, A285–A292 (2001)CrossRefGoogle Scholar
  27. 27.
    A.Y. Shenouda, H.K. Liu, Preparation. J. Electrochem. Soc. 157, A1183–A1187 (2010)CrossRefGoogle Scholar
  28. 28.
    X. Hou, J. Wang, M. Zhang, X. Liu, Z. Shao, W. Li, H. Shejun, RSC Adv 4, 34615–34622 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yana Li
    • 1
    • 2
  • Xianhua Hou
    • 1
    • 2
    Email author
  • Yajie Li
    • 1
    • 2
  • Qiang Ru
    • 1
    • 2
  • Shejun Hu
    • 1
    • 2
  • Kwok-ho Lam
    • 3
  1. 1.Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection MaterialsGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina
  3. 3.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations