Skip to main content
Log in

An analytical model of low field and high field electron mobility in wurtzite indium nitride

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis of transport properties and develops a low filed and high field electron analytical mobility model for wurtzite indium nitride (WZ InN) by Monte Carlo method. An nonparabolic electronic structure model was used in the ensemble Monte Carlo simulation, which includes all the major scattering mechanisms. The steady state velocity field curves and low field mobilities are calculated in detail as the functions of temperature, doping concentration and electric field. To avoid the effect of thermal motion at low field, the diffusion coefficient for InN is firstly obtained by autocorrelation function method, which is calculated by velocity fluctuation. The accurate low field mobility is deduced by Einstein equation. Finally, both the analytical low field and high field can be obtained by least squares fitting method, which can be employed in the simulation of InN devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009)

    Article  Google Scholar 

  2. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535–542 (2001)

    Article  Google Scholar 

  3. X. Chen, H. Liu, Q. Li, et al., Sci. Rep. 5, 13199 (2015)

    Article  Google Scholar 

  4. Y. Zhao, H. Wang, G. Wu, et al., Mater. Res. Express 2(3), 035901 (2015)

    Article  Google Scholar 

  5. G.B. Xu, G. Sun, Y.J. Ding, J. Zotova, B. Ioulia, J. Muhammad, I.T. Ferguson, J. Appl. Phys. 109, 093111-1–093111-4 (2011)

    Google Scholar 

  6. M.S. Miao, V.D.W. Chris, Appl. Phys. Express 8(2), 024302 (2015)

    Article  Google Scholar 

  7. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 075202 (2008)

    Article  Google Scholar 

  8. P. Siddiqua, S.K. O’Leary, J. Appl. Phys. 119(9), 3967 (2016)

    Article  Google Scholar 

  9. N.A. Masyukov, A.V. Dmitriev, J. Appl. Phys. 109, 023706 (2011)

    Article  Google Scholar 

  10. N. Ma, X.Q. Wang, S.T. Liu, G. Chen, J.H. Pan, L. Feng, F.J. Xu, N. Tang, B. Shen, Appl. Phys. Lett. 98, 192114 (2011)

    Article  Google Scholar 

  11. S.L. Wang, H.X. Liu, B. Gao, H.M. Cai, Appl. Phys. Lett. 100, 142105 (2012)

    Article  Google Scholar 

  12. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci. Mater. Electron. 25, 4675 (2014)

    Article  Google Scholar 

  13. M. Farahmand, C. Garetto, E. Bellotti et al., Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices 48(3), 535–542 (2001)

    Article  Google Scholar 

  14. M. Goano, E. Bellotti, E. Ghillino, G. Ghione, K.F. Brennan, Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN. J. Appl. Phys. 88, 6476–6482 (2000)

    Article  Google Scholar 

  15. E. Conwell, V.P. Weisskopf, Phys. Rev. 77, 388 (1950)

    Article  Google Scholar 

  16. W. Shockley, J.A. Copeland, R.P. James, Quantum Theory of Atoms Molecules and the Solid State (Academic, New York, 1966)

    Google Scholar 

  17. A.G. Barrientos, V. Grimalsky, Numerical simulations of nonlinear interaction of space charge waves in microwave microwave and millimeter wave range in n-InN Films using negative differential conductivity. Modeling Numer Simul Mater Sci 4(3), 136–142 (2014)

    Google Scholar 

  18. G.B. Xu, G. Sun, Y.J. Ding, I.B. Zotova, M. Jamil, I.T. Ferguson, Mechanism for THz generation from InN micropyramid emitters. J. Appl. Phys. 109(9), 093111 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Project of National Natural Science Foundation of China (Grant Nos. 61504100 and 61376099), in part by Specialized Research Fund for the Doctoral Program of High Education (No. 2015M582612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, H., Chen, Q. et al. An analytical model of low field and high field electron mobility in wurtzite indium nitride. J Mater Sci: Mater Electron 27, 11353–11357 (2016). https://doi.org/10.1007/s10854-016-5259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5259-x

Keywords

Navigation