Skip to main content
Log in

Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MgZrTa2O8 ceramics with excellent microwave dielectric properties had been prepared through conventional mixed oxide route. All the sintered samples exhibited a single phase with wolframite structure type belonged to P2/c (C 4 2h ) space group. The Raman spectrum revealed a similar lattice vibration in all samples with different sintering temperature. Emphatically, the extrinsic effects on microwave dielectric properties had also been investigated. The microwave dielectric properties of MgZrTa2O8 ceramics presented a significant dependence on the sintering condition. The porosity-corrected permittivity (ε-pc) was calculated to investigate the influence of the porosity to the dielectric constant (εr). For the high-dense MgZrTa2O8 ceramics, the main factors which had influences on quality factors (Q × f) were the grain size and grain-size distribution. The temperature coefficient of resonant frequency (τ f ) was depended on the dielectric constant and pores. The typical microwave dielectric properties of MgZrTa2O8 ceramics were εr = 22.76, Q × f = 131,500 GHz, τ f  = −33.81 ppm/°C, sintered at 1475 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric materials for wireless communication (Elsevier, Amsterdam, 2010)

    Google Scholar 

  2. R.J. Cava, Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54–62 (2001)

    Article  Google Scholar 

  3. Y. Higuchi, H. Tamura, Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies. J. Eur. Ceram. Soc. 23, 2683–2688 (2003)

    Article  Google Scholar 

  4. K.A. Nekouee, R.A. Khosroshahi, R.T. Mousavian, N. Ehsani, Sintering behavior and microwave dielectric properties of SiO2–MgO–Al2O3–TiO2 ceramics. J. Mater. Sci. Mater. Electron. 27, 3570–3575 (2016)

    Article  Google Scholar 

  5. H. Zhang, X.Y. Wang, Q. Cheng, X.P. Ma, M.X. Li, P. Zhang, Y.G. Zhao, Preparation of Li2MoO4 using aqueous solution method and microwave dielectric properties after sintering. J. Mater. Sci. Mater. Electron. 27, 5422–5426 (2016)

    Article  Google Scholar 

  6. Y.C. Chen, Y.N. Wang, R.Y. Syu, Effect of sintering temperature on microstructures and microwave dielectric properties of Ba2MgWO6 ceramics. J. Mater. Sci. Mater. Electron. 27, 4259–4264 (2016)

    Article  Google Scholar 

  7. P.P. Ma, X.Q. Liu, F.Q. Zhang, J.J. Xing, X.M. Chen, Sr(Ga0.5Nb0.5)1−xTixO3 low-loss microwave dielectric ceramics with medium dielectric constant. J. Am. Ceram. Soc. 98, 2534–2540 (2015)

    Article  Google Scholar 

  8. W.S. Xia, L.X. Li, P.F. Ning, Q.W. Liao, Relationship between bond ionicity, lattice energy, and microwave dielectric properties of Zn(Ta1−xNbx)2O6 ceramics. J. Am. Ceram. Soc. 95, 2587–2592 (2012)

    Article  Google Scholar 

  9. W.S. Xia, G.Y. Zhang, L.W. Shi, M.M. Zhang, Enhanced microwave dielectric properties of ZnTa2O6 ceramics with Sb5+ ion substitution. Mater. Lett. 124, 64–66 (2014)

    Article  Google Scholar 

  10. A. Baumgarte, R. Blachnik, New M2+M4+Nb2O8 phases. J. Alloy. Compd. 215, 117–120 (1994)

    Article  Google Scholar 

  11. Q.W. Liao, L.X. Li, X. Ren, X. Ding, New low-loss microwave dielectric material ZnTiNbTaO8. J. Am. Ceram. Soc. 94, 3237–3240 (2011)

    Article  Google Scholar 

  12. Q.W. Liao, L.X. Li, X. Ren, X.X. Yu, Q.L. Meng, W.S. Xia, A new microwave dielectric materials Ni0.5Ti0.5NbO4. Mater. Lett. 89, 351–353 (2012)

    Article  Google Scholar 

  13. C.L. Huang, S.H. Huang, R.Z. Lee, The microwave dielectric materials of (Zn1−xMgx)TiNb2O8 for electroceramics devices applications. Key Eng. Mater. 547, 49–55 (2013)

    Article  Google Scholar 

  14. Q.W. Liao, L.X. Li, P. Zhang, L.F. Cao, Y.M. Han, Correlation of crystal structure and microwave dielectric properties for Zn(Ti1−xSnx)Nb2O8 ceramics. Mater. Sci. Eng., B 176, 41–44 (2011)

    Article  Google Scholar 

  15. Q.W. Liao, L.X. Li, X. Ren, X.X. Yu, D. Guo, M.J. Wang, A low sintering temperature low loss microwave dielectric material ZnZrNb2O8. J. Am. Ceram. Soc. 95, 3363–3365 (2012)

    Article  Google Scholar 

  16. Y. Cheng, R.Z. Zuo, Y. Lv, Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics. Ceram. Int. 39, 8681–8685 (2013)

    Article  Google Scholar 

  17. S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new loss dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scripta Mater. 69, 274–277 (2013)

    Article  Google Scholar 

  18. W.S. Xia, F.Y. Yang, G.Y. Zhang, D.C. Guo, New low-dielectric-loss NiZrNb2O8 ceramics for microwave application. J. Alloy. Compd. 656, 470–475 (2016)

    Article  Google Scholar 

  19. P. Zhang, Y.G. Zhao, H.T. Wu, Bond iconicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1−xAx)2O8 (A = Ta, Sb) ceramics. Dalton Trans. 44, 16684–16693 (2015)

    Article  Google Scholar 

  20. H.T. Wu, Z.B. Feng, Q.J. Mei, J.D. Guo, J.X. Bi, Correlations of crystal structure, bond energy and microwave dielectric properties of AZrNb2O8 (A = Zn Co, Mg, Mn) ceramics. J. Alloy. Compd. 648, 368–373 (2015)

    Article  Google Scholar 

  21. H.T. Wu, J.X. Bi, Synthesis, characterization, and microwave dielectric properties of monoclinal structure ZnZrNb2O8 ceramics through the aqueous sol–gel process. J. Mater. Sci. Mater. Electron. 27, 3474–3480 (2016)

    Article  Google Scholar 

  22. Y.G. Zhao, P. Zhang, A novel low loss microwave dielectric ceramic ZnZrNb1.84Sb0.16O8 with wolframite structure. J. Mater. Sci. Mater. Electron. 27, 2933–2937 (2016)

    Article  Google Scholar 

  23. H.J. Lee, I.T. Kim, K.S. Hong, Dielectric properties of AB2O6 compounds at microwave frequencies. Jpn. J. Appl. Phys. 36, 1318–1320 (1997)

    Article  Google Scholar 

  24. M.W. Lufaso, Crystal structures, modeling, and dielectric properties relationships of 2:1 ordered Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) perovskites. Chem. Mater. 16, 2148–2156 (2004)

    Article  Google Scholar 

  25. T. Shimada, K. Ichikawa, T. Minemura, T. Kolodiazhnyi, J. Breeze, N.M. Alford, G. Annino, Temperature and frequency dependence of dielectric loss of Ba(Mg1/3Ta2/3)O3 microwave ceramics. J. Eur. Ceram. Soc. 30, 331–334 (2010)

    Article  Google Scholar 

  26. N. Ichinose, T. Shimada, Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg, Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 26, 1755–1759 (2006)

    Article  Google Scholar 

  27. D.J. Barber, K.M. Moulding, J. Zhou, M. Li, Structural order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J. Mater. Sci. 32, 1531–1544 (1997)

    Article  Google Scholar 

  28. X.S. Lyu, L.X. Li, H. Sun, S. Zhang, S. Li, High-Q microwave dielectrics in wolframite magnesium zirconium tantalite ceramics. Ceram. Int. 42, 2036–2040 (2016)

    Article  Google Scholar 

  29. X.S. Lyu, L.X. Li, S. Zhang, H. Sun, S. Li, J. Ye, B.W. Zhang, J.T. Li, A new low-loss dielectric material ZnZrTa2O8 for microwave devices. J. Euro. Ceram. Soc. 36, 931–935 (2016)

    Article  Google Scholar 

  30. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  31. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  32. K.M. Manu, C. Karthik, R. Ubic, M.T. Sebastian, Effect of Ca2+ substitution on the structure, microstructure, and microwave dielectric properties of Sr2Al2SiO7 ceramic. J. Am. Ceram. Soc. 96, 3842–3848 (2013)

    Article  Google Scholar 

  33. P.J. Harrop, Temperature coefficients of capacitance of solids. J. Mater. Sci. 4, 370–374 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the projects from the Fundamental Research Funds for the Central Universities of China University of Mining and Technology under Grant No. 2014QNA69, Laboratory Opening Fund of China University of Mining and Technology under Grant No. 2014208 and the National Natural Science Foundation of China under Grant No. 51402353.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang-Suo Xia or Li-Wei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, WS., Zhang, LY., Wang, Y. et al. Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics. J Mater Sci: Mater Electron 27, 11325–11330 (2016). https://doi.org/10.1007/s10854-016-5256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5256-0

Keywords

Navigation