Skip to main content
Log in

Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanotube arrays formed by electrochemical anodization of Ti metal foil are crystallized through a solvothermal technique at 200 °C (as compared to conventional annealing at 550 °C), which results in anatase phase with granular morphology. The photo-current measurements reveal a higher current-density under the visible light for solvothermally crystallized samples. The photo-current behavior has been analysed and correlated with defect state characterization using X-ray photo-electron spectroscopy, Photo-luminescence, Electron paramagnetic resonance and Mott-Schottky measurements. These studies indicate an oxygen vacancy related defect state at 1.14 eV below the conduction band. Also, the density of defect states in solvothermally crystallised samples is an order of magnitude higher than that in conventionally annealed samples. Furthermore, the photo-voltaic properties are studied through dye-sensitised solar cells. I–V characteristics of DSSC fabricated with solvothermally crystallised samples show comparable efficiency but higher dye-adsorption with respect to the conventionally annealed samples. Such a comparable efficiency at a lower thermal budget leads to reduced ‘energy pay-back time’ in solar cells fabricated with solvothermally crystallised TiO2 nanotube arrays. Finally, we demonstrate a proof-of-concept design of flexible solar cell based on TiO2 nanotubes grown on Kapton substrate and crystallised through the solvothermal technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. C.N.R. Rao, V. Govindaraj, Nanotubes and Nanowires, 2nd edn. (The Royal Society of Chemistry, London, 2011)

    Google Scholar 

  2. K. Hashmoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  Google Scholar 

  3. S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, T.J. LaTempa, C.A. Grimes, Phys. Chem. Chem. Phys. 12, 2780 (2010)

    Article  Google Scholar 

  4. K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114(19), 9385 (2014)

    Article  Google Scholar 

  5. D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001)

    Article  Google Scholar 

  6. B.M. Rao, S.C. Roy, J. Phys. Chem. C 118, 1198 (2014)

    Article  Google Scholar 

  7. B.M. Rao, S.C. Roy, RSC Adv. 4, 38133 (2014)

    Article  Google Scholar 

  8. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)

    Article  Google Scholar 

  9. S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, H.C. Zeng, Chem. Mater. 14, 1391 (2002)

    Article  Google Scholar 

  10. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14, 3370 (2004)

    Article  Google Scholar 

  11. K. Nakane, N. Ogata, Photocatalyst Nanofibers Obtained by Calcination of Organic-Inorganic Hybrids, in Nanofibers, ed. by A. Kumar (InTech, Rijeka, 2010)

    Google Scholar 

  12. J. Ni, K. Noh, C.J. Frandsen, S.D. Kong, G. He, T. Tang, S. Jin, Mater. Sci. Eng. C 33, 259 (2013)

    Article  Google Scholar 

  13. Y.Y. Song, P. Schmuki, Electrochem. Commun. 12, 579 (2010)

    Article  Google Scholar 

  14. H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Chem. Commun. 49, 2067 (2013)

    Article  Google Scholar 

  15. D.R. Modeshia, R.I. Walton, Chem. Soc. Rev. 39, 4303 (2010)

    Article  Google Scholar 

  16. Y. Mao, S. Mao, Z.G. Ye, Z. Xie, L. Zhenga, Mater. Chem. Phys. 124, 1232 (2010)

    Article  Google Scholar 

  17. R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, Mater. Chem. Phys. 132, 957 (2012)

    Article  Google Scholar 

  18. D. Chu, A. Younis, S.J. Li, Phys. D Appl. Phys. 45, 355 (2012)

    Google Scholar 

  19. L. Li, G. Li, J. Xu, J. Zheng, W. Tong, W. Hu, Phys. Chem. Chem. Phys. 12, 10857 (2010)

    Article  Google Scholar 

  20. C. Mercado, Z. Seeley, A. Bandyopadhyay, S. Bose, J.L. McHale, ACS Appl. Mater. Interfaces 3, 2281 (2011)

    Article  Google Scholar 

  21. B. Santara, P.K. Giri, K. Imatika, M. Fujii, J. Phys. Chem. C 117, 23402 (2013)

    Article  Google Scholar 

  22. X.W. Wang, X.P. Gao, G.R. Li, L. Gao, T.Y. Yan, Appl. Phys. Lett. 91, 143101 (2007)

    Article  Google Scholar 

  23. R. Van de Krol, A. Goossens, J.J. Schoonman, Electrochem. Soc. 144, 1723 (1997)

    Article  Google Scholar 

  24. H.S. Kim, S.H. Kang, Bull. Korean Chem. Soc. 34, 2067 (2013)

    Article  Google Scholar 

  25. O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nanotechnol. 4, 592 (2009)

    Article  Google Scholar 

  26. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006)

    Article  Google Scholar 

  27. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18, 065707 (2007)

    Article  Google Scholar 

  28. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale 2, 45 (2010)

    Article  Google Scholar 

  29. D. Kim, A. Ghicov, S.P. Albu, P. Schmuki, J. Am. Chem. Soc. 130, 16454 (2008)

    Article  Google Scholar 

  30. K. Zhu, N.R. Neale, A. Miedaner, A. Frank, J. Nano Lett. 7, 69 (2007)

    Article  Google Scholar 

  31. K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Nano Lett. 7, 3739 (2007)

    Article  Google Scholar 

  32. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, ACS Nano 2, 1113 (2008)

    Article  Google Scholar 

  33. P. Chen, J. Brillet, H. Bala, P. Wang, S.M. Zakeeruddin, M. Gratzel, J. Mater. Chem. 19, 5325 (2009)

    Article  Google Scholar 

  34. Z. Liu, V. Subramania, M. Misra, J. Phys. Chem. C 113, 14028 (2009)

    Article  Google Scholar 

  35. Z. Liu, M. Misra, ACS Nano 4, 2196 (2009)

    Article  Google Scholar 

  36. H.W. Shang, W.T. Wei, B.Z. Jing, L. Yuan, Chin. Sci. Bull. 57, 864 (2012)

    Article  Google Scholar 

  37. X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal, S. Zhang, L.H. Wong, Nano Energy 11, 728 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Satishchandra B Ogale (NCL Pune) for solar cell measurements and Prof. T. Pradeep (DST Unit of Nanoscience and Department of Chemistry, IIT Madras) for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath C. Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banki, M.R., Tathavadekar, M., Chunchu, V. et al. Modified photo-electrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays. J Mater Sci: Mater Electron 27, 12427–12437 (2016). https://doi.org/10.1007/s10854-016-5248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5248-0

Keywords

Navigation