Skip to main content

Advertisement

Log in

Hydrothermal synthesis, multicolor tunable luminescence and energy transfer of Eu3+ or/and Tb3+ activated NaY(WO4)2 nanophosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Eu3+ and/or Tb3+ doped NaY(WO4)2 nanomaterials have been successfully synthesized by one-step hydrothermal method. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, X-ray energy dispersive spectroscopy, and photoluminescence spectra. The results show that the novel nanoplates with a diameter of 300–600 nm and the thickness of 20–25 nm are observed. Under the excitation of 246 or 230 nm, individual RE3+ ions activated NaY(WO4)2 phosphors exhibit excellent emission properties in their respective regions. The as-prepared Eu3+ or Tb3+ doped samples show strong red and green emission, originating from the allowed 5D0 → 7FJ (J = 0, 1, 2) transition of the Eu3+ ions and the 5D4 → 7FJ (J = 6, 5, 4, 3) transition of the Tb3+ ions. In addition, by properly tuning the relative concentration of Eu3+ ions in the case of Eu3+ and Tb3+ co-doped systems, tunable emissions in a single component are obtained under the excitation of 230 or 395 nm. Moreover, an energy transfer from Tb3+ to Eu3+ is observed, which has been justified through the luminescence spectra and the fluorescence decay curves. Furthermore, the corresponding luminescence and energy transfer mechanism have been proposed in optical transitions and possible energy transfer scheme. These results indicate that Eu3+ and Tb3+ doped NaY(WO4)2 phosphors will find potential application in the field of solid-state lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.B. Im, Y.I. Kim, H.S. Yoo, D.Y. Jeon, Luminescent and structural properties of (Sr1−x, Bax)3MgSi2O8:Eu2+: effects of Ba content on the Eu2+ site preference for thermal stability. Inorg. Chem. 48, 557–564 (2009)

    Article  Google Scholar 

  2. Z. Wang, G. Li, Z. Quan, D. Kong, X. Liu, M. Yu, J. Lin, Nanostructured CaWO4, CaWO4:Pb2+ and CaWO4:Tb3+ particles: polyol-mediated synthesis and luminescent properties. J. Nanosci. Nanotechno. 7, 602–609 (2007)

    Google Scholar 

  3. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  4. L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9, 1302–1317 (1997)

    Article  Google Scholar 

  5. T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, A GaN bulk crystal with improved structural quality grown by the ammonothermal method. Nat. Mater. 6, 568–571 (2007)

    Article  Google Scholar 

  6. R. Mueller-Mach, G. Mueller, M.R. Krames, H.A. Höppe, F. Stadler, W. Schnick, T. Juestel, P. Schmidt, Highly efficient all-nitride phosphor-converted white light emitting diode. Phys. Status Solidi A 202, 1727–1732 (2005)

    Article  Google Scholar 

  7. M. Kottaisamy, K. Horikawa, H. Kominami, T. Aoki, N. Azuma, T. Nakamura, Y. Nakanishi, Y. Hatanaka, Synthesis and characterization of fine particle Y2O2S:Eu red phosphor at low-voltage excitation. J. Electrochem. Soc. 147, 1612–1616 (2000)

    Article  Google Scholar 

  8. K. Murakami, H. Kudo, T. Taguchi, M. Yoshimo, Compound semiconductor lighting based on InGaN ultraviolet LED and ZnS phosphor system, in 2000 IEEE International Symposium on Compound Semiconductors (2000), pp. 449–454

  9. Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, X. Huang, Preparation and luminescent properties of (Ca1−x, Srx)S:Eu2+ red-emitting phosphor for white LED. J. Lumin. 111, 139–145 (2005)

    Article  Google Scholar 

  10. Y. Sato, N. Takahashi, S. Sato, Full-color fluorescent display devices using a near-UV light-emitting diode. Jpn. J. Appl. Phys., Part 2 35, L838–L839 (1996)

    Article  Google Scholar 

  11. F. Lei, B. Yan, H.H. Chen, J.T. Zhao, Surfactant-assisted hydrothermal synthesis of Eu3+-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2. Inorg. Chem. 48, 7576–7584 (2009)

    Article  Google Scholar 

  12. Y. Zheng, H. You, K. Liu, Y. Song, G. Jia, Y. Huang, M. Yang, L. Zhang, G. Ning, Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+. CrystEngComm 13, 3001–3007 (2011)

    Article  Google Scholar 

  13. J. Liu, J.M. Cano-Torres, C. Cascales, F. Esteban-Betegón, M.D. Serrano, V. Volkov, C. Zaldo, M. Rico, U. Griebner, V. Petrov, Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO4)2 and Yb3+:NaLa(MoO4)2. Phys. Status Solidi A 202, R29–R31 (2005)

    Article  Google Scholar 

  14. A. Garcia-Cortes, C. Cascales, A. de Andres, C. Zaldo, E.V. Zharikov, K.A. Subbotin, S. Bjurshagen, V. Pasiskevicius, M. Rico, Raman scattering and Nd3+ laser operationin NaLa(WO4)2. IEEE J. Quantum Electron. 43, 157–167 (2007)

    Article  Google Scholar 

  15. S. Huang, X. Zhang, L. Wang, L. Bai, J. Xu, C. Li, P. Yang, Controllable synthesis and tunable luminescence properties of Y2(WO4)3:Ln3+ (Ln = Eu, Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures. Dalton Trans. 41, 5634–5642 (2012)

    Article  Google Scholar 

  16. X. Liu, W. Xiang, F. Chen, Z. Hu, W. Zhang, Synthesis and photoluminescence characteristics of Dy3+ doped NaY(WO4)2 phosphor. Mater. Res. Bull. 48, 281–285 (2013)

    Article  Google Scholar 

  17. Y.S. Zhao, H. Fu, F. Hu, A.D. Peng, J. Yao, Multicolor emission from ordered assemblies of organic 1D nanomaterials. Adv. Mater. 19, 3554–3558 (2007)

    Article  Google Scholar 

  18. A.A. Kaminskii, H.J. Eichler, K.-I. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, R. Balda, Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated raman scattering-active crystals. Appl. Opt. 38, 4533–4547 (1999)

    Article  Google Scholar 

  19. Y.R. Do, Y.D. Huh, Optical properties of potassium Europium tungstate phosphors. J. Electrochem. Soc. 147, 4385–4388 (2000)

    Article  Google Scholar 

  20. S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x (MoO4) x :Eu3+ (M = Gd, Y, Bi). Chem. Phys. Lett. 387, 2–6 (2004)

    Article  Google Scholar 

  21. E. Pavitra, G.S.R. Raju, Y.H. Ko, J.S. Yu, A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors. Phys. Chem. Chem. Phys. 14, 11296–11307 (2012)

    Article  Google Scholar 

  22. M. Shang, G. Li, X. Kang, D. Yang, D. Geng, J. Lin, Tunable Luminescence and Energy Transfer properties of Sr3AlO4F:RE3+ (RE = Tm/Tb, Eu, Ce) Phosphors. ACS Appl. Mater. Interfaces 3, 2738–2746 (2011)

    Article  Google Scholar 

  23. Y. Tian, B. Chen, B. Tian, N. Yu, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, Q. Meng, R. Hua, Hydrothermal synthesis and tunable luminescence of persimmon-like sodium lanthanum tungstate:Tb3+, Eu3+ hierarchical microarchitectures. J. Colloid Interface Sci. 393, 44–52 (2013)

    Article  Google Scholar 

  24. C. Zhang, H. Liang, S. Zhang, C. Liu, D. Hou, L. Zhou, G. Zhang, J. Shi, Efficient sensitization of Eu3+ emission by Tb3+ in Ba3La(PO4)3 under VUV-UV excitation: energy transfer and tunable emission. J. Phys. Chem. C 116, 15932–15937 (2012)

    Article  Google Scholar 

  25. Z. Hou, Z. Cheng, G. Li, W. Wang, C. Peng, C. Li, P.A. Ma, D. Yang, X. Kang, J. Lin, Electrospinning-derived Tb2(WO4)3:Eu3+ nanowires: energy transfer and tunable luminescence properties. Nanoscale 3, 1568–1574 (2011)

    Article  Google Scholar 

  26. L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, X. Xu, Synthesis and luminescent properties of high brightness MLa(WO4)2:Eu3+ (M = Li, Na, K) and NaRE(WO4)2:Eu3+ (RE = Gd, Y, Lu) red phosphors. J. Lumin. 143, 14–20 (2013)

    Article  Google Scholar 

  27. X. Liu, W. Xiang, F. Chen, W. Zhang, Z. Hu, Synthesis and photoluminescence of Tb3+ activated NaY(WO4)2 phosphors. Mater. Res. Bull. 47, 3417–3421 (2012)

    Article  Google Scholar 

  28. S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang, P. Yang, Self-assembled three-dimensional NaY(WO4)2:Ln3+ architectures: hydrothermal synthesis, growth mechanism and luminescence properties. J. Alloys Compd. 529, 140–147 (2012)

    Article  Google Scholar 

  29. N. Xue, X. Fan, Z. Wang, M. Wang, Mater. Lett. 61, 1576 (2007)

    Article  Google Scholar 

  30. F. Wang, X. Fan, D. Pi, Z. Wang, M. Wang, Hydrothermal synthesis and luminescence behavior of rare-earth-doped NaLa(WO4)2 powders. J. Solid State Chem. 178, 825–830 (2005)

    Article  Google Scholar 

  31. S. Perets, R.Z. Shneck, R. Gajic, A. Golubovic, Z. Burshtein, Vibrational spectra of sodium gadolinium tungstate NaGd(WO4)2 single crystals: observation of spatial dispersion. Vib. Spectrosc. 49, 110–117 (2009)

    Article  Google Scholar 

  32. X. Qian, X. Pu, D. Zhang, L. Li, M. Li, S. Wu, Combustion synthesis and luminescence properties of NaY1−xEux(WO4)2 phosphors. J. Lumin. 131, 1692–1695 (2011)

    Article  Google Scholar 

  33. Y. Liu, Y.X. Liu, G.X. Liu, X.T. Dong, J.X. Wang, Up/Down conversion, tunable photoluminescence and energy transfer properties of NaLa(WO4)2:Er3+, Eu3+ phosphors. RSC Adv. 5, 97995–98003 (2015)

    Article  Google Scholar 

  34. Y. Liu, Y.X. Liu, G.X. Liu, X.T. Dong, J.X. Wang, W.S. Yu, Luminescence, energy transfer and tunable color properties of a single-component Tb3+ or/and Sm3+ doped NaGd(WO4)2 phosphors with UV excitation for WLEDs. RSC Adv. 4, 58708–58716 (2014)

    Article  Google Scholar 

  35. Y. Liu, Y.X. Liu, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, A single component and warm-white-emitting phosphor NaGd(WO4)2:Tm3+, Dy3+, Eu3+: synthesis, luminescence, energy transfer and tunable color. Inorg. Chem. 53, 11457–11466 (2014)

    Article  Google Scholar 

  36. Y.Y. Jiang, Y. Liu, G.X. Liu, X.T. Dong, J.X. Wang, W.S. Yu, Q. Dong, Surfactant-assisted hydrothermal synthesis of octahedral structured NaGd(MoO4)2:Eu3+/Tb3+ and tunable photoluminescent properties. Opt. Mater. 36, 1865–1870 (2014)

    Article  Google Scholar 

  37. P. Jia, X. Liu, Y. Luo, M. Yu, J. Lin, Sol–Gel synthesis and characterization of SiO2@NaGd (WO4)2:Eu3+ core-shell-structured spherical phosphor. J. Electrochem. Soc. 154, J39–J43 (2007)

    Article  Google Scholar 

  38. C.H. Chiu, M.F. Wang, C.S. Lee, T.M. Chen, Structural, spectroscopic and photoluminescence studies of LiEu(WO4)2−x(MoO4)x as a near-UV convertible phosphor. J. Solid State Chem. 180, 619–627 (2007)

    Article  Google Scholar 

  39. N. Xue, X. Fan, Z. Wang, M. Wang, Synthesis process and the luminescence properties of rare earth doped NaLa(WO4)2 nanoparticles. J. Phys. Chem. Solids 69, 1891–1896 (2008)

    Article  Google Scholar 

  40. J. Liao, S. Zhang, H. You, H.-R. Wen, J.L. Chen, W. You, Energy transfer and luminescence properties of Eu3+-doped NaTb(WO4)2 phosphor prepared by a facile hydrothermal method. Opt. Mater. 33, 953–957 (2011)

    Article  Google Scholar 

  41. A. Khanna, P.S. Dutta, Narrow spectral emission CaMoO4:Eu3+, Dy3+, Tb3+ phosphor crystals for white light emitting diodes. J. Solid State Chem. 198, 93–100 (2013)

    Article  Google Scholar 

  42. D. Tu, Y. Liang, R. Liu, D. Li, Eu/Tb ions co-doped white light luminescence Y2O3 phosphors. J. Lumin. 131, 2569–2573 (2011)

    Article  Google Scholar 

  43. M.V. Nazarov, D.Y. Jeon, J.H. Kang, E.J. Popovici, L.E. Muresan, M.V. Zamoryanskaya, B.S. Tsukerblat, Luminescence properties of europium–terbium double activated calcium tungstate phosphor. Solid State Commun. 131, 307–311 (2004)

    Article  Google Scholar 

  44. P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, M.K.R. Warrier, Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J. Phys. Chem. Solids 64, 841–846 (2003)

    Article  Google Scholar 

  45. J.C. Sczancoski, L.S. Cavalcante, N.L. Marana, R.O. da Silva, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, J.R. Sambrano, M.S. Li, E. Longo, J. Andrés, Electronic structure and optical properties of BaMoO4 powders. Curr. Appl. Phys. 10, 614–624 (2010)

    Article  Google Scholar 

  46. V.M. Longo, L.S. Cavalcante, R. Erlo, V.R. Mastelaro, A.T. de Figueiredo, J.R. Sambrano, S. de Lázaro, A.Z. Freitas, L. Gomes, N.D. Vieira Jr., J.A. Varela, E. Longo, Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater. 56, 2191–2202 (2008)

    Article  Google Scholar 

  47. A.M. Li, D.K. Xu, H. Lin, S.H. Yang, Y.Z. Shao, Y.L. Zhang, Z.Q. Chen, Facile morphology-controllable hydrothermal synthesis and color tunable luminescence properties of NaGd(MoO4)2:Eu3+, Tb3+ microcrystals. RSC Adv. 5, 45693–45702 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of P.R. China (NSFC) (Grant Nos. 51072026, 51573023) and the Development of Science and Technology Plan Projects of Jilin Province (Grant No. 20130206002GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, G., Wang, J. et al. Hydrothermal synthesis, multicolor tunable luminescence and energy transfer of Eu3+ or/and Tb3+ activated NaY(WO4)2 nanophosphors. J Mater Sci: Mater Electron 27, 10780–10790 (2016). https://doi.org/10.1007/s10854-016-5183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5183-0

Keywords

Navigation