Skip to main content
Log in

Studies on properties of as-synthesized conducting polythiophene through aqueous chemical route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research article, as-synthesized polythiophene (PTh) were analyzed through FTIR, XRD, FESEM and TG/DTA techniques. The polymerization of PTh were confirmed through FTIR and XRD analysis. The temperature dependence of DC electrical conductivity of the samples has been obtained over a temperature range from 303 to 393 K followed Arrhenius relation. The DC conductivity of the samples was found to be in the range of 10−6–10−4 S cm−1. The activation energies of the samples were ranges between 0.23 and 0.14 eV. The variation of AC electrical conductivity with frequency obeys Jonscher power law. Moreover, dielectric studies were made using AC impedance analyzer in the frequency and temperature ranges 20 Hz–1 MHz and 303–393 K, respectively. The maximum value of DC conductivity was found to be 2.14 × 10−4 S cm−1 at 348 K for PTh with stoichiometric ratio (70:30) wt% of thiophene and FeCl3, which increases with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Liu, L. Zhang, S. Poyraz, X.Y. Zhang, Curr. Org. Chem. 17, 2267 (2013)

    Google Scholar 

  2. X.G. Li, M.R. Huang, W. Duan, Y.L. Yang, Chem. Rev. 102, 2930 (2002)

    Article  Google Scholar 

  3. M. Aydin, B. Esat, C. Kilic, M.E. Kose, A. Ata, F. Yilmaz, Eur. Polym. J. 47, 2294 (2011)

    Article  Google Scholar 

  4. J.I. Hong, I.H. Yeo, W.K. Paik, J. Electrochem. Soc. 148, A163 (2001)

    Article  Google Scholar 

  5. K.Y. Xie, J. Li, Y.Q. Lai, Z.A. Zhang, Y.X. Liu, G.G. Zhang, H.T. Huang, Nanoscale 3, 2207 (2011)

    Google Scholar 

  6. B.H. Patil, A.D. Jagadale, C.D. Lokhande, Synth. Met. 162, 1405 (2012)

    Article  Google Scholar 

  7. B. Smitha, S. Sridhar, A.A. Khan, J. Membr. Sci. 225, 76 (2003)

    Article  Google Scholar 

  8. X.J. Wang, M.R. Andersson, M.E. Thompson, O. Inganas, Synth. Met. 137, 1020 (2003)

    Google Scholar 

  9. F. Bloisi, A. Cassinese, R. Papa, L. Vicari, V. Califano, Thin Solid Films 516, 1598 (2008)

    Article  Google Scholar 

  10. C.N. Kotanena, A.N. Wilson, C. Dong, C.Z. Dinud, G.A. Justina, A.G. Elie, Biomaterials 34, 6327 (2013)

    Google Scholar 

  11. H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymer (Wiley, New York, 1997)

    Google Scholar 

  12. Q.T. Vu, M. Pavlik, N. Hebestreit, J. Pfleger, U. Rammelta, W. Plieth, Electrochim. Acta 51, 1124 (2005)

    Article  Google Scholar 

  13. G.C. Arteaga, M.A. del Valle, M. Antilén, F.R. Díaz, M.A. Gacitúa, P.P. Zamora, J.C. Bernède, L. Cattin, G. Louarn, Int. J. Electrochem. Sci. 7, 7854 (2012)

    Google Scholar 

  14. L.R. Chen, L.Z. Ping, Chin. Sci. Bull. 54, 2032 (2009)

    Article  Google Scholar 

  15. J.W.P. Lin, L.P. Dudek, J. Polym. Sci. Polym. Chem. 18, 2873 (1980)

    Google Scholar 

  16. S.V. Kamat, S.H. Tamboli, V. Puri, R.K. Puri, J.B. Yadav, O.S. Joo, Arch. Phys. Res. 1, 122 (2010)

    Google Scholar 

  17. N. Ballav, M. Biswas, Mater. Sci. Eng., B 129, 272 (2006)

    Article  Google Scholar 

  18. J.M. Pringle, M. Forsyth, D.R. MacFarlane, K. Wagner, S.B. Hall, D.L. Officer, Polymer 46, 2058 (2005)

    Article  Google Scholar 

  19. M.G. Voronkov, I.A. Tokareva, I.A. Dorofeev, V.I. Smirnov, L.G. Shagun, Russ. J. Gen. Chem. 80, 2079 (2010)

    Google Scholar 

  20. D. Reyman, E. Guereca, P. Herrasti, Ultrason. Sonochem. 14, 665 (2007)

    Article  Google Scholar 

  21. J.M. Lee, S.J. Lee, Y.J. Jung, J.H. Kim, Curr. Appl. Phys. 8, 663 (2008)

    Google Scholar 

  22. D.S. Kelkar, A.B. Chourasia, Indian J. Phys. 86, 107 (2012)

    Article  Google Scholar 

  23. I. Imae, S. Imabayashi, K. Korai, T. Mashima, Y. Ooyama, K. Komaguchi, Y. Harima, Mater. Chem. Phys. 131, 756 (2012)

    Article  Google Scholar 

  24. A. Gok, M. Omastova, A.G. Yavuz, Synth. Met. 157, 29 (2007)

    Article  Google Scholar 

  25. D.S. Kelkar, A.B. Chourasia, Macromolecular Symposia, Special Issue: Nanostructured and Biorelated Materials, vol 327 (2013), p. 53

  26. B.Z. Lin, C. Ding, B.H. Xu, Z.J. Chen, Y.L. Chen, Mater. Res. Bull. 44, 723 (2009)

    Google Scholar 

  27. H. Higashimura, S. Kobayashi, Encyclopedia of Polymer Science and Technology, oxidative Polymerization (Wiley, New York, 2004)

    Google Scholar 

  28. Y. Ding, A.B. Padias, H.K. Hall, J. Polym. Sci., Part A: Polym. Chem. 37, 2579 (1999)

    Google Scholar 

  29. M.R. Karim, K.T. Lim, C.J. Lee, M.S. Lee, Synth. Met. 157, 1012 (2007)

    Article  Google Scholar 

  30. S. Richard, P. Gnanakan, M. Rajasekhar, A. Subramania, Int. J. Electrochem. Sci. 4, 1301 (2009)

    Google Scholar 

  31. R.E. Partch, S.G. Gangoli, E. Matijevic, W. Cai, S. Arajs, J. Colloid Interface Sci. 144, 34 (1991)

    Article  Google Scholar 

  32. S.A. Waghuley, S.M. Yenorkar, S.S. Yawale, S.P. Yawale, Sens. Actuators, B 128, 373 (2008)

    Article  Google Scholar 

  33. B. Sari, M. Talu, F. Yildirim, E.K. Balci, Appl. Surf. Sci. 205, 38 (2003)

    Article  Google Scholar 

  34. D.S. Kelkar, A.B. Chourasia, J. Chem. Chem. Tech. 5, 309 (2011)

    Google Scholar 

  35. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, M. Amlouk, J. Alloys. Compd 582, 822 (2014)

    Article  Google Scholar 

  36. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, J. Adv. Ceram. 2, 300 (2013)

    Google Scholar 

  37. M.B. Armand, J.M. Chabagno, M.J. Duclot, in Fast Ion Transport in Solids, ed. by P. Vashista, J.N. Mundy, G.K. Shenoy (Amsterdam, North Holland, 1979)

    Google Scholar 

  38. N. Reddeppa, A.K. Sharma, V.V.R. Narasimha Rao, W. Chen, Measurement 47, 41 (2014)

    Article  Google Scholar 

  39. A.A. Assencia, C. Mahadevan, Bull. Mater. Sci. 28, 418 (2005)

    Article  Google Scholar 

  40. M.H. Lakhdar, B. Ouni, M. Amlouk, Mater. Sci. Semicond. Process. 19, 39 (2014)

    Google Scholar 

  41. B.B. Mohantya, P.S. Sahoo, M.P.K. Sahoo, R.N.P. Choudhary, Adv. Mater. Lett. 4, 308 (2012)

    Google Scholar 

  42. A. Dutta, T.P. Sinha, P. Jena, S. Adak, J. Non Cryst. Solids 354, 3957 (2008)

    Article  Google Scholar 

  43. S. Jayaseelan, P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, Mater. Chem. Phys. 87, 377 (2004)

    Article  Google Scholar 

  44. D. Ravinder, A.V.R. Reddy, G.R. Mohan, Mater. Lett. 52, 265 (2002)

    Article  Google Scholar 

  45. B.G. Soares, M.E. Leyva, G.M.O. Barra, D. Khastgir, Eur. Polym. J. 42, 686 (2006)

    Article  Google Scholar 

  46. Y. Xi, Y. Bin, C.K. Chiang, M. Matsuo, Carbon 45, 1309 (2007)

    Article  Google Scholar 

  47. R. Cheruku, L. Vijayan, G. Govindaraj, Mater. Sci. Eng., B 177, 779 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are very much thankful to Head, Department of Physics Sant Gadge Baba Amravati University, Amravati for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Waghuley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadatkar, N.S., Waghuley, S.A. Studies on properties of as-synthesized conducting polythiophene through aqueous chemical route. J Mater Sci: Mater Electron 27, 10573–10581 (2016). https://doi.org/10.1007/s10854-016-5152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5152-7

Keywords

Navigation