Skip to main content
Log in

Influence of TCNQ acceptor on optical and electrical properties of tetrasubstituted allenes films fabricated by vacuum thermal evaporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the synthesis and characterization of organic semiconductors formed from allenes and TCNQ salts are reported. These materials have been utilized to prepare thin films by thermal evaporation at high temperature. The chemical structure and morphology of the deposited films were analyzed by IR spectroscopy, fast atomic bombardment mass and scanning electron microscopy. The optical band gap of these semiconductors films was evaluated from optical absorption measurements. Theoretical calculations (DFT with dispersion forces analysis included) were carried out in order to simulate molecular interaction and to establish the nature of the bonds between both fragments. This has resulted in finding some intermolecular and some intramolecular hydrogen bonds and their formation is discussed. Finally the direct current electrical properties of the glass/ITO/allene-TCNQ/Ag sandwich structures were also investigated. The conductivity behaviour of these materials was achieved by means of electrical measurements; the materials show semiconductor characteristics and all the conductivity values are found around 10−8–101 Ω−1 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.L. Brédas, D. Beljonne, V. Coropcenau, J. Cornil, Chem. Rev. 104, 4971–5003 (2004). doi:10.1021/cr040084k

    Article  Google Scholar 

  2. J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein, J. Am. Chem. Soc. 95(3), 948–949 (1973). doi:10.1021/ja00784a066

    Article  Google Scholar 

  3. H. Miyasaka, Acc. Chem. Res. 46(2), 248–257 (2012). doi:10.1021/ar300102t

    Article  Google Scholar 

  4. J. Puigdollers, C. Voz, A. Orpella, I. Martin, M. Vetter, R. Alcubilla, Thin Solid Films 427, 367–370 (2003). doi:10.1016/S0040-6090(02)01238-5

    Article  Google Scholar 

  5. O. Pfeiffer, E. Gnecco, L. Zimmerli, S. Maier, E. Meyer, L. Nony, R. Bennewitz, F. Diederich, H. Fang, D. Bonifazi, Institute of physics publishing. J. Phys: Conf. Ser. 19, 166–174 (2005)

    Google Scholar 

  6. M. Yamaoka, S. Asami, N. Funaki, S. Kimura, L. Yingjie, T. Fukuda, M. Yamashita, PLoS ONE 8(5), e62903 (2013). doi:10.1371/journal.pone.0062903

    Article  Google Scholar 

  7. B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.L. Brédas, J. Genoe, Adv. Funct. Mater. 22, 2987–2995 (2012). doi:10.1002/adfm.201200512

    Article  Google Scholar 

  8. A. Thajur, G. Singh, G.S.S. Saini, N. Goyal, S.K. Tripathi, Opt. Mater. 30(4), 565–570 (2007). doi:10.1016/j.optmat.2006.12.013

    Article  Google Scholar 

  9. N. Laidani, R. Bartali, G. Gottardi, M. Anderle, P. Cheyssac, J. Phys.: Condens. Matter 20(1), 015216 (2008). doi:10.1088/0953-8984/20/01/015216

    Google Scholar 

  10. P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 51, 2818–2828 (2012). doi:10.1002/anie.201108001

    Article  Google Scholar 

  11. E. Soriano, I. Fernández, Chem. Soc. Rev. 43, 3041–3105 (2014). doi:10.1039/C3CS60457H

    Article  Google Scholar 

  12. S.M. Ma, Chem. Rev. 105, 2829–2871 (2005). doi:10.1021/cr020024j

    Article  Google Scholar 

  13. M. Alcarazo, Dalton Trans. 40, 1839–1845 (2011). doi:10.1039/C0DT01555E

    Article  Google Scholar 

  14. M. Bendikov, F. Wudl, Chem. Rev. 104, 4891–4945 (2004). doi:10.1021/cr030666m

    Article  Google Scholar 

  15. N. Krause, C. Winter, Chem. Rev. 111, 1994–2009 (2011). doi:10.1021/cr1004088

    Article  Google Scholar 

  16. M. López-Reyes, J.G. López-Cortés, M.C. Ortega-Alfaro, R. Toscano, C. Álvarez-Toledano, Tetrahedron 69(35), 7365–7372 (2013). doi:10.1016/j.tet.2013.06.069

    Article  Google Scholar 

  17. A.D. Becke, Phys. Rev. A 38(6), 3098–3100 (1988). doi:10.1103/PhysRevA.38.3098

    Article  Google Scholar 

  18. J.P. Perdew, Y. Wang, Phys Rev B 45, 13244–13249 (1992). doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  19. A.I. Gaussian 09, Revision, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2009

  20. S. Grimme, J. Antony, S. Ehrlich, H.J. Krieg, Chem. Phys. (2010). doi:10.1063/1.3382344

    Google Scholar 

  21. M. Ohring, in Chapter 7 of Materials Science of Thin Films, 2nd edn., ed. by M. Ohring (Academic Press, San Diego, 2002), pp. 357–415

    Chapter  Google Scholar 

  22. G. Saito, J.P. Ferraris, Bull. Chem. Soc. Jpn. (1980). doi:10.1246/bcsj.53.2141

    Google Scholar 

  23. S. Adachi, Optical Properties of Crystalline and Amorphous Semiconductors (Kluwer, Boston, 1999)

    Book  Google Scholar 

  24. R.P. Gandhi, M.P.S. Ishar, Indian J. Chem. 29, 648–651 (1990)

    Google Scholar 

  25. J.D. Scott, B.R. Russell, J. Am. Chem. Soc. (1973). doi:10.1021/ja00786a013

    Google Scholar 

  26. M.M. El-Nahass, K.F. Abd-El-Rahman, A.A. Al-Ghamdi, A.M. Asiri, Phys. B 334, 398–406 (2004). doi:10.1016/j.physb.2003.10.019

    Article  Google Scholar 

  27. M.E. Azim-Araghi, A. Krier, Pure Appl. Opt. 6, 443 (1997). doi:10.1088/0963-9659/6/4/007

    Article  Google Scholar 

  28. T.M. Mok, S.K. O’Leary, J. Appl. Phys. 102, 113525 (2007). doi:10.1063/1.2817822

    Article  Google Scholar 

  29. K.R. Rajesh, C.S. Menon, Can. J. Phys. 83(11), 1151–1159 (2005). doi:10.1139/p05-065

    Article  Google Scholar 

  30. S. Gravano, A.K. Hassan, R.D. Gould, Int. J. Electron. 70(3), 477–484 (1991). doi:10.1080/00207219108921297

    Article  Google Scholar 

  31. A.K. Hassan, R.D. Gould, Int. J. Electron. 74(1), 59–65 (1993). doi:10.1080/00207219308925813

    Article  Google Scholar 

  32. T.D. Anthopoulos, T.S. Shafai, Phys Status Solidi (A) 181, 569–574 (2002). doi:10.1002/1521-396X(200010)181:2<569:AID-PSSA569>3.0.CO;2-Y

    Article  Google Scholar 

  33. J. Simon, F. Tournillac, New J. Chem. 11, 383–399 (1997)

    Google Scholar 

  34. J. Simon, New J. Chem. 10, 295–311 (1986)

    Google Scholar 

Download references

Acknowledgments

M.E. Sánchez-Vergara gratefully acknowledges the financial support of SEP-CONACYT-México, under Grant 153751. The authors wish to thank the technical support of Ing. Guillermo Villagrán, Ing. Aline Hernández and Mariel Leyva Esqueda (Anáhuac University). Roberto Salcedo would like to acknowledge Adriana Tejeda, Alberto López, María Teresa Vázquez and Oralia Jiménez for their technical assistance (IIM-UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sanchez-Vergara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Vergara, M.E., Leyva-Esqueda, E.A., Alvarez, C. et al. Influence of TCNQ acceptor on optical and electrical properties of tetrasubstituted allenes films fabricated by vacuum thermal evaporation. J Mater Sci: Mater Electron 27, 9900–9910 (2016). https://doi.org/10.1007/s10854-016-5059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5059-3

Keywords

Navigation