Skip to main content
Log in

Ag–Pt hollow nanoparticles anchored reduced graphene oxide composites for non-enzymatic glucose biosensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel, stable and sensitive non-enzymatic glucose biosensor based on bimetallic hollow Ag/Pt nanoparticles and the reduced graphene oxide (rGO) was obtained. The hybrid of bimetallic hollow Ag/Pt nanoparticles-reduced graphene oxide (HAg/PtNPs-rGO) was prepared by a galvanic replacement reaction and the thermal reduction of graphene oxide. Thermal reduction has been highly effective in producing graphene-like films which can render a stable substrate for hollow Ag/Pt nanoparticles. The morphology and composition of the prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry and Fourier transform infrared spectra. Cyclic voltammetry measurements demonstrated that the biosensor decorated by HAg/PtNPs-rGO can directly detect glucose and show a superior electro catalytic activity. The results of amperometric method showed a desirable amperometric response with a sensitivity of 129.32 μA mM−1 cm−2, a linear range of 0.003–7.72 mM (R2 = 0.9943), a fast response time (less than 3 s) and a low detection limit of 1.8 μM (S/N = 3). In addition, the fabricated sensor also had good selectivity, reproducibility and long-term stability. The sensor modified by HAg/PtNPs-rGO could make a promising application in glucose determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.R. Richter, J. Dairy Sci. 76, 3114–3117 (1993)

    Article  Google Scholar 

  2. C. Wei, X. Li, F. Xu, Anal. Methods 6, 1550–1557 (2014)

    Article  Google Scholar 

  3. L.C. Clark, C. Lyons, Ann. NY Acad. Sci. 102, 29–45 (1962)

    Article  Google Scholar 

  4. M.F. Hossain, J.Y. Park, Electroanalysis 26, 940–951 (2014)

    Article  Google Scholar 

  5. G.L. Luque, M.C. Rodríguez, G.A. Rivas, Talanta 66, 467–471 (2005)

    Article  Google Scholar 

  6. R. Wilson, A.P.F. Turner, Biosens. Bioelectron. 7, 165–185 (1992)

    Article  Google Scholar 

  7. Y. Zhu, H. Zhu, X. Yang, Electroanalysis 19, 698–703 (2007)

    Article  Google Scholar 

  8. K.E. Toghill, R.G. Compton, Int. J. Electrochem. Sci. 5, 1246–1301 (2010)

    Google Scholar 

  9. H. Shu, L. Cao, G. Chang, H. He, Y. Zhang, Electrochim. Acta 132, 524–532 (2014)

    Article  Google Scholar 

  10. Y. Zhang, L. Su, D. Manuzzi, Biosens. Bioelectron. 31, 426–432 (2012)

    Article  Google Scholar 

  11. L.M. Lu, L. Zhang, F.L. Qu, H.X. Lu, Biosens. Bioelectron. 25, 218–223 (2009)

    Article  Google Scholar 

  12. H. Bai, M. Han, Y. Du, J. Bao, Z. Dai, Chem. Commun. 46, 1739–1741 (2010)

    Article  Google Scholar 

  13. S. Badhulika, R.K. Paul, T. Terse, Electroanalysis 26, 103–108 (2014)

    Article  Google Scholar 

  14. M.Q. Guo, H.S. Hong, X.N. Tang, H.D. Fang, Electrochim. Acta 63, 1–8 (2012)

    Article  Google Scholar 

  15. T.G.S. Babu, T. Ramachandran, Electrochim. Acta 55, 1612–1618 (2010)

    Article  Google Scholar 

  16. S.K. Meher, G.R. Rao, Nanoscale 5, 2089–2099 (2013)

    Article  Google Scholar 

  17. J. Chen, W.D. Zhang, J.S. Ye, Electrochem. Commun. 10, 1268–1271 (2008)

    Article  Google Scholar 

  18. M. Li, X. Bo, Z. Mu, Y. Zhang, Sensor Actuat B-Chem. 192, 261–268 (2014)

    Article  Google Scholar 

  19. J. Wang, D.F. Thomas, A. Chen, Anal. Chem. 80, 997–1004 (2008)

    Article  Google Scholar 

  20. J. Ryu, K. Kim, H.S. Kim, H.T. Hahn, Biosens. Bioelectron. 26, 602–607 (2010)

    Article  Google Scholar 

  21. B. Zheng, G. Liu, A. Yao, Y. Xiao, J. Du, Sensor Actuat B-Chem. 195, 431–438 (2014)

    Article  Google Scholar 

  22. Z. Peng, J. Wu, H. Yang, Chem. Mater. 22, 1098–1106 (2009)

    Article  Google Scholar 

  23. A. Pearson, A.P. O’Mullane, V. Bansal, Chem. Commun. 46, 731–733 (2010)

    Article  Google Scholar 

  24. Q. Chen, L. Zhang, G. Chen, Anal. Chem. 84, 171–178 (2011)

    Article  Google Scholar 

  25. X. Wang, E. Liu, X. Zhang, Electrochim. Acta 130, 253–260 (2014)

    Article  Google Scholar 

  26. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  27. K. Dhara, J. Stanley, T. Ramachandran, Sensor Actuat B-Chem. 195, 197–205 (2014)

    Article  Google Scholar 

  28. P.G. Ren, D.X. Yan, X. Ji, Nanotechnology. 22, 055705 (2011)

    Article  Google Scholar 

  29. M. Li, X. Bo, Z. Mu, Sensor Actuat B-Chem. 192, 261–268 (2014)

    Article  Google Scholar 

  30. M.J. McAllister, J.L. Li, Chem. Mat. 19, 4396–4404 (2007)

    Article  Google Scholar 

  31. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  32. M. Liu, R. Liu, W. Chen, Biosens. Bioelectron. 45, 206–212 (2013)

    Article  Google Scholar 

  33. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Article  Google Scholar 

  34. M.F. Hossain, J.Y. Park, Electroanalysis 26, 940–951 (2014)

    Article  Google Scholar 

  35. Y. Hu, Q. Shao, P. Wu, H. Zhang, C. Cai, Electrochem. Commun. 18, 96–99 (2012)

    Article  Google Scholar 

  36. G. Wang, J. Yang, J. Park, J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  Google Scholar 

  37. Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi, ACS Nano 5, 191–198 (2010)

    Article  Google Scholar 

  38. H.M. Song, D.H. Anjum, R. Sougrat, J. Mater. Chem. 22, 25003–25010 (2012)

    Article  Google Scholar 

  39. D. Ma, X. Tang, M. Guo, H. Lu, X. Xu, Ionics 21, 1417–1426 (2015)

    Article  Google Scholar 

  40. P.G. Ren, D.X. Yan, X. Ji, Nanotechnology. 22, 055705 (2011)

    Article  Google Scholar 

  41. Z. Lin, Y. Yao, Z. Li, Y. Liu, J. Phys. Chem. C 114, 14819–14825 (2010)

    Article  Google Scholar 

  42. H. Gao, F. Xiao, C.B. Ching, H. Duan, ACS. Appl. Mat. Interfaces 3, 3049–3057 (2011)

    Article  Google Scholar 

  43. Z. Niu, J. Chen, H.H. Hng, J. Ma, X. Chen, Adv. Mater. 24, 4144–4150 (2012)

    Article  Google Scholar 

  44. J. Ryu, K. Kim, H.S. Kim, H.T. Hahn, Biosens. Bioelectron. 26, 602–607 (2010)

    Article  Google Scholar 

  45. F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosens. Bioelectron. 24, 3481–3486 (2009)

    Article  Google Scholar 

  46. X. Bo, J. Bai, L. Yang, L. Guo, Sensor Actuat B-Chem. 157, 662–668 (2011)

    Article  Google Scholar 

  47. Z. Luo, L. Yuwen, Y. Han, J. Tian, X. Zhu, L. Weng, Biosens. Bioelectron. 36, 179–185 (2012)

    Article  Google Scholar 

  48. G. Wu, X. Song, Y. Wu, X. Chen, F. Luo, Talanta 105, 379–385 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (Nos. 51143009 and 51273145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Sun, Y., Yu, X. et al. Ag–Pt hollow nanoparticles anchored reduced graphene oxide composites for non-enzymatic glucose biosensor. J Mater Sci: Mater Electron 27, 9370–9378 (2016). https://doi.org/10.1007/s10854-016-4979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4979-2

Keywords

Navigation