Skip to main content
Log in

Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper analyses the three-dimensional (3-D) surface texture of Copper oxide nanowires grown on different substrates and in an electric field. Atomic force microscopy, X-ray diffraction and field emission scanning electron microscopy analyses were applied also to characterize the 3-D surface texture data in connection with the statistical, and fractal analyses. This type of 3-D morphology allows a deeper understanding of structure/property relationships and studies the effect of micromorphology on CuO nanowires grown in electric field and the impact of growth direction on their properties. It also provides a compact representation of complex micromorphology information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.A. Ozin, Nanochemistry: synthesis in diminishing dimensions. Adv. Mater. 4, 612–649 (1992). doi:10.1002/adma.19920041003

    Article  Google Scholar 

  2. D.M. Gillingham, C. Muller, J.A.C. Bland, Spin dependent quantum transport effects in Cu nanowires. J. Appl. Phys. 95, 6995 (2004)

    Article  Google Scholar 

  3. D.M. Gillingham, C. Müller, J. Hong, R.Q. Wu, J.A.C. Bland, Evidence of spin-dependent quantum transport effects in CuO nanowires. J. Phys.: Condens. Matter 18, 9135–9142 (2006)

    Google Scholar 

  4. J. Liang, N. Kishi, T. Soga, T. Jimbo, The synthesis of highly aligned cupric oxide nanowires by heating copper foil. J. Nanomater. 20 (2011), Article ID 268508:1–8

  5. X.J. Zhang, A.X. Gu, G.F. Wang, Y. Wei, W. Wang, H.Q. Wu, B. Fang, Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. Cryst. Eng. Comm. 12, 1120 (2010)

    Article  Google Scholar 

  6. T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol. Energy Mater. Sol. Cells 56, 85–92 (1998)

    Article  Google Scholar 

  7. W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, A simple wet-chemical synthesis and characterization of CuO nanorods. Appl. Phys. A Mater. Sci. Process. 76(3), 417–420 (2003)

    Article  Google Scholar 

  8. H. Wu, D.D. Lin, W. Pan, Fabrication, assembly, and electrical characterization of CuO nanofibers. Appl. Phys. 89(13), Article ID 133125 (2006)

  9. C.H. Xu, C.H. Woo, S.Q. Shi, The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct. 36, 31–38 (2004)

    Article  Google Scholar 

  10. X.G. Wen, Y.T. Xie, C.L. Choi, K.C. Wan, X.Y. Li, S.H. Yang, Copper-based nanowire materials: templated syntheses, characterizations, and applications. Langmuir 21, 4729–4737 (2005)

    Article  Google Scholar 

  11. C.H. Xu, C.H. Woo, S.Q. Shi, 2004, Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62–66 (2004)

    Article  Google Scholar 

  12. L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du, Y.N. Lu, S.Z. Shi, Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260(1), 130–135 (2004)

    Article  Google Scholar 

  13. A. Kumar, A.K. Srivastava, P. Tiwari, R.V. Nandedkar, The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 (2004). doi:10.1088/0953-8984/16/47/007

    Google Scholar 

  14. X.C. Jiang, T. Herricks, Y.N. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2(12), 1333–1338 (2002)

    Article  Google Scholar 

  15. N. Chopra, B. Hu, B.J. Hinds, Selective growth and kinetic study of copper oxide nanowires from patterned thin film multilayer structures. J. Mater. Res. 22(10), 2691–2699 (2007)

    Article  Google Scholar 

  16. B.J. Hansen, G. Lu, J. Chen, Direct oxidation growth of CuO nanowires from copper-containing substrates. J. Nanomater. 48 (2008)

  17. L. Yuan, G. Zhou, Enhanced CuO nanowire formation by thermal oxidation of roughened copper. J. Electrochem. Soc. 159(4), C205–C209 (2012)

    Article  Google Scholar 

  18. M. Farbod, N. Ghaffari, I. Kazeminezhad, Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram. Int. 40, 517–521 (2014)

    Article  Google Scholar 

  19. Ş. Ţălu, Micro and Nanoscale Characterization of Three Dimensional Surfaces. Basics and Applications (Napoca Star Publishing House, Cluj-Napoca, 2015)

    Google Scholar 

  20. V. Dalouji, S.M. Elahi, S. Solaymani, A. Ghaderi, Absorption edge and the refractive index dispersion of carbon-nickel composite films at different annealing temperatures. Eur. Phys. J. Plus. 131, 84 (2016)

    Article  Google Scholar 

  21. S. Solaymani, A. Ghaderi, N.B. Nezafat, Comment on: characterization of microroughness parameters in titanium nitride thin films grown by DC magnetron sputtering. J. Fusion Energy 31(6), 591 (2012)

    Article  Google Scholar 

  22. S. Stach, D. Dallaeva, Ş. Ţălu, P. Kaspar, P. Tománek, S. Giovanzana, L. Grmela, Morphological features in aluminium nitride epilayers prepared by magnetron sputtering. Mater. Sci. Pol. 33(1), 175–184 (2015)

    Google Scholar 

  23. Ş. Ţălu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, Surface morphology of titanium nitride thin films synthesised by DC reactive magnetron sputtering. Mater. Sci. Pol. 33(1), 137–143 (2015). doi:10.1515/msp-2015-0010

    Google Scholar 

  24. Ş. Ţălu, S. Stach, D. Raoufi, F. Hosseinpanahi, Film thickness effect on fractality of tin-doped In2O3 thin films. Electron. Mater. Lett. 11(5), 749–757 (2015). doi:10.1007/s13391-015-4280-1

    Article  Google Scholar 

  25. M. Bramowicz, S. Kulesza, K. Rychlik, Comparison between contact and tapping AFM modes in surface morphology studies. Tech. Sci. 15(2), 307–318 (2012)

    Google Scholar 

  26. Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, A. Ghaderi, F. Mashayekhi, S. Solaymani, Microstructure and tribological properties of FeNPs@a-C: H films by micromorphology analysis and fractal geometry. Ind. Eng. Chem. Res. 54(33), 8212–8218 (2015). doi:10.1021/acs.iecr.5b02449

    Article  Google Scholar 

  27. Ş. Ţălu, S. Stach, J. Zaharieva, M. Milanova, D. Todorovsky, S. Giovanzana, Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) β-Diketonates by fractal analysis. Int. J. Polym. Anal. Charact. 19(5), 404–421 (2014)

    Article  Google Scholar 

  28. M. Bramowicz, S. Kulesza, T. Lipiński, P. Szabracki, P. Piątkowski, Fractal analysis of AFM data characterizing strongly isotropic and anisotropic surface topography. Solid State Phenom. 203–204, 86–89 (2013). doi:10.4028/www.scientific.net/SSP.203-204.86

    Article  Google Scholar 

  29. S. Kulesza, M. Bramowicz, A comparative study of correlation methods for determination of fractal parameters in surface characterization. Appl. Surf. Sci. 293, 196–201 (2014)

    Article  Google Scholar 

  30. Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, A. Boochani, S.M. Elahi, Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. Superlattices Microstruct. 93, 109–121 (2016)

    Article  Google Scholar 

  31. Ş. Ţălu, S. Stach, S. Solaymani, R. Moradian, A. Ghaderi, M.R. Hantehzadeh, S.M. Elahi, Ż. Garczyk, S. Izadyar, Multifractal spectra of atomic force microscope images of Cu/Fe nanoparticles based films thickness. J. Electroanal. Chem. 749, 31–41 (2015)

    Article  Google Scholar 

  32. Ş. Ţălu, S. Stach, A. Mahajan, D. Pathak, T. Wagner, A. Kumar, R.K. Bedi, Multifractal analysis of drop-casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates. Surf. Interface Anal. 46(6), 393–398 (2014)

    Article  Google Scholar 

  33. Ş. Ţălu, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts. RSC Adv. 6, 27228–27234 (2016)

    Article  Google Scholar 

  34. Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Shafikhani, A. Ghaderi, M. Ahmadirad, Gold nanoparticles embedded in carbon film: micromorphology analysis. J. Ind. Eng. Chem. 35, 158–166 (2016)

    Article  Google Scholar 

  35. Ş. Ţălu, S. Stach, A. Méndez, G. Trejo, M. Ţălu, Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings. J. Electrochem. Soc. 161(1), D44–D47 (2014)

    Google Scholar 

  36. P. Czaja, W. Maziarz, J. Przewoźnik, A. Żywczak, P. Ozga, M. Bramowicz, S. Kulesza, J. Dutkiewicz, Surface topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic Ni–Mn–Sn Heusler alloy ribbons. Intermetallics 55, 1–8 (2014)

    Article  Google Scholar 

  37. D. Risovic, S.M. Poljacek, K. Furic, M. Gojo, Inferring fractal dimension of rough/porous surfaces—a comparison of SEM image analysis and electrochemical impedance spectroscopy methods. App. Surf. Sci. 255, 3063–3070 (2008)

    Article  Google Scholar 

  38. W.P. Dong, P.J. Sullivan, K.J. Stout, Comprehensive study of parameters for characterizing 3-dimensional surface topography. 4: parameters for characterizing spatial and hybrid properties. Wear 178, 45–60 (1994)

    Article  Google Scholar 

  39. R.S. Sayles, T.R. Thomas, Spatial representation of surface roughness by means of structure function—practical alternative to correlation. Wear 42, 263–276 (1977)

    Article  Google Scholar 

  40. A. Thomas, T.R. Thomas, Digital analysis of very small scale surface roughness. J. Wave Mater. Interact. 3, 341–350 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atefeh Ghaderi.

Ethics declarations

Conflict of interest

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ţălu, Ş., Solaymani, S., Bramowicz, M. et al. Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J Mater Sci: Mater Electron 27, 9272–9277 (2016). https://doi.org/10.1007/s10854-016-4965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4965-8

Keywords

Navigation