Skip to main content
Log in

Structure, dielectric property and impedance spectroscopy of La2/3Cu3Ti4O12 ceramics by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La2/3Cu3Ti4O12 (LCTO) precursor powders were synthesized by the sol–gel method. Effect of sol conditions and sintering process on microstructure and dielectric properties of LCTO powders or ceramics were investigated systematically. The optimum sol conditions for the synthesis of precursor powders were as follows: the Ti4+ concentration of 1.00 mol/L, the molar ratio of water and titanium of 5.6:1 and the sol pH of 1.0, respectively. After sintered at 1105 °C for 15 h, the LCTO ceramics exhibited more homogeneous microstructure, much higher dielectric constant (ca 09–1.6 × 104) and lower dielectric loss (ca 0.057). The higher dielectric constant of the LCTO ceramics might be due to the internal barrier layer capacitor effect. The LCTO ceramics showed two kinds of conductivity activation energy for grain boundary conductivity from complex impedance analysis. The transition temperature of two activation energy values occured between 170 and 210 °C. The temperature range of 170–210 °C was critical pseudocritical region of the dielectric constant, dielectric loss and activation energy. Furthermore, it was concluded that the grain boundary play an important role for electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 1439 (2004)

    Article  Google Scholar 

  3. P.B. Shri, K.B.R. Varma, Phys. B 403, 2246 (2008)

    Article  Google Scholar 

  4. P.F. Liang, Z.P. Yang, X.L. Chao, Z.H. Liu, J. Am. Ceram. Soc. 95, 2218 (2012)

    Article  Google Scholar 

  5. P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)

    Article  Google Scholar 

  6. J.J. Liu, R.W. Smith, W.N. Mei, Chem. Mater. 19, 6020 (2007)

    Article  Google Scholar 

  7. D.P. Singha, Y.N. Mohapatraa, D.C. Agrawal, Mater. Sci. Eng. B 157, 58 (2009)

    Article  Google Scholar 

  8. S.H. Jin, H.P. Xia, Y.P. Zhang, J.P. Guo, J. Xu, Mater. Lett. 61, 1404 (2007)

    Article  Google Scholar 

  9. D.L. Sun, A.Y. Wu, S.T. Yiny, Structure. J. Am. Ceram. Soc. 91, 169 (2008)

    Article  Google Scholar 

  10. Z.Q. Liu, G.S. Jiao, X.L. Chao, Z.P. Yang, Mater. Res. Bull. 48, 4877 (2013)

    Article  Google Scholar 

  11. B.A. Bender, M.J. Pan, Mater. Sci. Eng. B 117, 339 (2005)

    Article  Google Scholar 

  12. C.F. Yang, L. Wu, T.S. Wu, J. Mater. Sci. 27, 6573 (1992)

    Article  Google Scholar 

  13. P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, C.L. Wang, Appl. Phys. Lett. 94, 032902 (2009)

    Article  Google Scholar 

  14. Z.Q. Liu, X.L. Chao, Z.P. Yang, J. Mater. Sci. Mater. Electron 25, 2096 (2014)

    Article  Google Scholar 

  15. S.M. Moussa, B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001)

    Article  Google Scholar 

  16. G.Z. Zang, J.L. Zhang, P. Zheng, J.F. Wang, C.L. Wang, J. Phys. D Appl. Phys. 38, 1824 (2005)

    Article  Google Scholar 

  17. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  18. P. Leret, J.F. Fernandez, J. Frutos, D. Fern´andez-Hevia, J. Euro. Ceram. Soc. 27, 3901 (2007)

    Article  Google Scholar 

  19. M.A. Siddiqui, V.S. Chandel, A. Azam, Appl. Surf. Sci. 258, 7354 (2012)

    Article  Google Scholar 

  20. I. Bakonyi, E.T. Kadar, B. Fograrassy, Nanostruct. Mater. 3, 155 (1993)

    Article  Google Scholar 

  21. L. Zhang, Z.J. Tang, Phys. Rev. B 70, 17430 (2004)

    Google Scholar 

  22. C.K. Suman, K. Prasad, R.N.P. Choudhary, Mater. Chem. Phys. 97, 425 (2006)

    Article  Google Scholar 

  23. Z.Q. Liu, X.L. Chao, P.F. Liang, Z.P. Yang, J. Am. Ceram. Soc. 97, 2154 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No: 51172136), the Development Funds of Shaanxi Province Army-civilian Integration (No. 16JMR02) and the Scientific Research Funds of Weinan Normal University (Nos. 16ZRR02, 13YKF002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, Z. & Chao, X. Structure, dielectric property and impedance spectroscopy of La2/3Cu3Ti4O12 ceramics by sol–gel method. J Mater Sci: Mater Electron 27, 8980–8990 (2016). https://doi.org/10.1007/s10854-016-4929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4929-z

Keywords

Navigation