Photo catalyst CoFe2O4–CdS nanocomposites for degradation of toxic dyes: investigation of coercivity and magnetization

  • Kambiz Hedayati
  • Sara Azarakhsh
  • Jilla Saffari
  • Davood Ghanbari


In this work, firstly CoFe2O4 nanostructures were synthesized via a simple precipitation method. Then cadmium sulphide and CoFe2O4–CdS nanocomposites were prepared by a fast chemical procedure. The effect of concentration, temperature and precipitating agent on the morphology and particle size of the magnetic products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Alternating gradient force magnetometer shows the super-paramagnetic and ferromagnetic property of the ferrite nanostructures. The photocatalytic behaviour of CoFe2O4–CdS nanocomposites was evaluated using the degradation of three azo dyes (acid black, acid brown and methyl orange) under ultraviolet light irradiation. The results show that nanocomposites have applicable magnetic and photocatalytic performance.


Ferrite Photocatalytic Activity Methyl Orange CoFe2O4 Cadmium Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.H. Xiao, W.F. Jiang, L.Y. Li, X.J. Li, J. Mater. Chem. Phys. 106, 82 (2007)CrossRefGoogle Scholar
  2. 2.
    N. Moumen, M.P. Pileni, J. Chem. Mater. 8, 1128 (1996)CrossRefGoogle Scholar
  3. 3.
    Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004)CrossRefGoogle Scholar
  4. 4.
    M.A.Z. Khajeh, H. Shokrollahi, L. Avazpour, M.R. Toroghinejad, J. Sol-Gel. Sci. Technol. 76, 271 (2015)CrossRefGoogle Scholar
  5. 5.
    Q. Song, Z.J. Zhang, J. Phys. Chem. 110, 11205 (2006)CrossRefGoogle Scholar
  6. 6.
    Y.C. Mattei, O.P. Perez, Microelectron. J. 40, 673 (2009)CrossRefGoogle Scholar
  7. 7.
    E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournes, C. D’Orleans, J.L. Rehspringer, M. Kurmoo, J. Chem. Mater. 16, 5689 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, J. Alloys Compd. 654, 460 (2016)CrossRefGoogle Scholar
  9. 9.
    B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav, J Solid State Commun. 147, 479 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Nilmoung, P. Kidkhunthod, S. Pinitsoontorn, S. Rujirawat, R. Yimnirun, S. Maensiri, J. Mater. Sci. Proc. 119, 141 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Saravanan, R. Jayavel, A. Pandurangan, J.H. Liu, H.Y. Miao, J Mater. Res. Bull. 52, 128 (2014)CrossRefGoogle Scholar
  12. 12.
    E. Yücel, S. Kahraman, H.S. Güder, J Mater. Res. Bull. 68, 227 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Shen, N. Bao, P.E. Prevelige, A. Gupta, J. Phys. Chem. 114, 2551 (2010)Google Scholar
  14. 14.
    P. Punitha, S. Parthiban, S. Senthilkumar, H. Anandalakshmi, S.C. Mojumdar, J. Therm. Anal. Calorim. 119, 871 (2015)CrossRefGoogle Scholar
  15. 15.
    Z. Sun, F. Li, L. Xu, S. Liu, M. Zhao, B. Xu, J. Phys. Chem. 116, 6420 (2012)Google Scholar
  16. 16.
    A. Ravi, A.N. Kumar, S. Ramvir, J Mater. Focus 3, 267 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Peng, K. Li, P. Zeng, Q. Zhang, X. Zhang, J. Phys. Chem. 116, 22720 (2012)CrossRefGoogle Scholar
  18. 18.
    G.X. Liang, P. Fan, Z.H. Zheng, J.T. Luo, D.P. Zhang, C.M. Chen, P.J. Cao, J. Appl. Surf. Sci. 273, 491 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Xiong, J. Zhu, X. Wang, Ind. Eng. Chem. Res. 52, 17126 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Shi, K. Zhou, B. Wang, S. Jiang, X. Qian, Z. Gui, R.K.K. Yuen, Y. Hu, J. Mater. Chem. A 2, 535 (2014)CrossRefGoogle Scholar
  21. 21.
    S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci.: Mater. Electron. 27, 1244 (2016)Google Scholar
  22. 22.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci.: Mater. Electron. 27, 4800 (2016)Google Scholar
  23. 23.
    A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, L. Nejati-Moghadam, S. Gholamrezaei, J. Mater. Sci.: Mater. Electron. 26, 6970 (2015)Google Scholar
  24. 24.
    J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, M.R. Hosseini-Tabatabaei, J. Mater. Sci.: Mater. Electron. 26, 9591 (2015)Google Scholar
  25. 25.
    D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, J. Ind. Eng. Chem. 20, 3970 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Saffari, D. Ghanbari, N. Mir, K. Khandan-Barani, J. Ind. Eng. Chem. 20, 4119 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Saffari, H. Shams, D. Ghanbari, A. Esmaeili, J. Clust. Sci. 25, 1225 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kambiz Hedayati
    • 1
  • Sara Azarakhsh
    • 1
  • Jilla Saffari
    • 2
  • Davood Ghanbari
    • 3
  1. 1.Department of ScienceArak University of TechnologyArakIran
  2. 2.Young Researchers and Elite Club, Zahedan BranchIslamic Azad UniversityZahedanIran
  3. 3.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations